Skip to main content

Multi-temporal Globally-Optimal Dense 3-D Cell Segmentation and Tracking from Multi-photon Time-Lapse Movies of Live Tissue Microenvironments

  • Conference paper
Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data (STIA 2012)

Abstract

Living immune system microenvironments can be imaged by timelapse multi-photon multi-spectral microscopy to reveal the complex tissue architecture and cell movements. Automated segmentation and tracking of these motile, numerous, and densely packed cells over long-duration 3-D movies is needed to sense and quantify subtle phenotypic differences between genetically modified and wild type cells. We present a novel multi-temporal 3-D cell tracking algorithm that: (i) implicitly models and corrects segmentation errors by exploiting spatio-temporal continuity, (ii) computes globally-optimal second-order correspondences through second-order matching in a directed hypergraph, (iii) does not require any manual initialization, and (iv) utilizes a trainable nonparametric motion model using smooth kernel density estimation. The tracking problem is formulated as a second-order hyperedge selection problem in a directed hypergraph, and solved using branch-and-cut integer programming. A quantitative study on four real datasets containing 3,361 cells showed that our algorithm reduces segmentation errors by 53% post-tracking compared to independent segmentations in every frame. In comparison, Jaqaman et al.’s u-track [1] algorithm eliminates only 38% of the segmentation errors. We found the error rate of our tracking algorithm to be 2.23%, 28.8% lesser than u-track’s error rate while comparing 7,213 track correspondences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L., Danuser, G.: Robust single-particle tracking in live-cell time-lapse sequences. Nature Methods 5, 695–702 (2008)

    Article  Google Scholar 

  2. Smal, I., Draegestein, K., Galjart, N., Niessen, W., Meijering, E.: Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis. TMI 27, 789–804 (2008)

    Google Scholar 

  3. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. PAMI 22, 266–280 (2000)

    Article  Google Scholar 

  4. Perera, A., Tsai, C.-L., Flatland, R.Y., Stewart, C.V.: Maintaining valid topology with active contours: theory and application. In: CVPR, pp. 496–503 (2000)

    Google Scholar 

  5. Medioni, G., Min, C.: Inferring segmented dense motion layers using 5D tensor voting. PAMI 30, 1589–1602 (2007)

    Google Scholar 

  6. Kornprobst, P., Medioni, G.: A 2D+ t tensor voting based approach for tracking. In: ICPR, vol. 3, pp. 1092–1095 (2000)

    Google Scholar 

  7. Reisert, M., Burkhardt, H.: Efficient tensor voting with 3D tensorial harmonics. In: CVPR Workshops, pp. 1–7 (2008)

    Google Scholar 

  8. Min, C., Medioni, G.: Tensor voting accelerated by graphics processing units (GPU). In: ICPR, pp. 1103–1106 (2006)

    Google Scholar 

  9. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Quarterly 2, 83–87 (1955)

    Article  Google Scholar 

  10. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Info. Theory 13, 260–269 (1967)

    Article  MATH  Google Scholar 

  11. Pitié, F., Berrani, S.A., Kokaram, A., Dahyot, R.: Off-line multiple object tracking using candidate selection and the Viterbi algorithm. In: ICIP, vol. 3, pp. 109–112 (2005)

    Google Scholar 

  12. Poore, A.B., Gadaleta, S.: Some assignment problems arising from multiple target tracking. Math. & Comp. Model. 43, 1074–1091 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Al-Kofahi, O., Radke, R.J., Goderie, S.K., Shen, Q., Temple, S., Roysam, B.: Automated cell lineage construction. Cell Cycle, 327–335 (2006)

    Google Scholar 

  14. Chen, Y.: Automated 5-D analysis of cell dynamics from time-lapse sequences of multi-channel images. Ph.D. diss., ECSE dept., RPI, Troy, NY (2009)

    Google Scholar 

  15. Padfield, D.R.: Segmentation and tracking algorithms for monitoring cellular motion and function. Ph.D. dissertation, ECSE dept., RPI, Troy, NY (2009)

    Google Scholar 

  16. Shafique, K., Shah, M.: A noniterative greedy algorithm for multiframe point correspondence. PAMI 27, 51–65 (2005)

    Article  Google Scholar 

  17. Shafique, K., Haering, N.: A rank constrained continuous formulation of multi-frame multi-target tracking problem. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  18. Veenman, C.: Motion tracking as a constrained optimization problem. Pattern Recognition 36, 2049–2067 (2003)

    Article  MATH  Google Scholar 

  19. Parzen, E.: On estimation of a probability density function and mode. The Ann. of Math. Stat. 33, 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. The Ann. of Math. Stat. 27, 832–837 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  21. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York (1986)

    MATH  Google Scholar 

  22. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. TBME 57, 841–852 (2010)

    Article  Google Scholar 

  23. The FARSIGHT Toolkit, http://www.farsight-toolkit.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narayanaswamy, A. et al. (2012). Multi-temporal Globally-Optimal Dense 3-D Cell Segmentation and Tracking from Multi-photon Time-Lapse Movies of Live Tissue Microenvironments. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M. (eds) Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data. STIA 2012. Lecture Notes in Computer Science, vol 7570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33555-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33555-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33554-9

  • Online ISBN: 978-3-642-33555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics