Skip to main content

Predicting the Location of Glioma Recurrence after a Resection Surgery

  • Conference paper
Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data (STIA 2012)

Abstract

We propose a method for estimating the location of glioma recurrence after surgical resection. This method consists of a pipeline including the registration of images at different time points, the estimation of the tumor infiltration map, and the prediction of tumor regrowth using a reaction-diffusion model. A data set acquired on a patient with a low-grade glioma and post surgery MRIs is considered to evaluate the accuracy of the estimated recurrence locations found using our method. We observed good agreement in tumor volume prediction and qualitative matching in regrowth locations. Therefore, the proposed method seems adequate for modeling low-grade glioma recurrence. This tool could help clinicians anticipate tumor regrowth and better characterize the radiologically non-visible infiltrative extent of the tumor. Such information could pave the way for model-based personalization of treatment planning in a near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clatz, O., Sermesant, M., Bondiau, P.Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3-d growth of brain tumors in mr images coupling diffusion with biomechanical deformation. IEEE Transactions on Medical Imaging 24(10), 1334–1346 (2005)

    Article  Google Scholar 

  2. Cobzas, D., Mosayebi, P., Murtha, A., Jagersand, M.: Tumor Invasion Margin on the Riemannian Space of Brain Fibers. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 531–539. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, S102–S102 (2009)

    Google Scholar 

  4. Giese, A., Westphal, M.: Treatment of malignant glioma: a problem beyond the margins of resection. Journal of Cancer Research and Clinical Oncology 127(4), 217–225 (2001)

    Article  Google Scholar 

  5. Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images using em algorithm and diffusion reaction modeling. IEEE Trans. Med. Imaging 30(2), 375–390 (2011)

    Article  Google Scholar 

  6. Harpold, H.L.P., Alvord Jr., E.C., Swanson, K.R.: The evolution of mathematical modeling of glioma proliferation and invasion. Journal of Neuropathology & Experimental Neurology 66(1), 1 (2007)

    Article  Google Scholar 

  7. Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. J. of Math. Bio. 56(6), 793–825 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jbabdi, S., Mandonnet, E., Duffau, H., Capelle, L., Swanson, K.R., Pélégrini-Issac, M., Guillevin, R., Benali, H.: Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. MRM 54(3), 616–624 (2005)

    Google Scholar 

  9. Konukoglu, E., Clatz, O., Menze, B.H., Stieltjes, B., Weber, M.A., Mandonnet, E., Delingette, H., Ayache, N.: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Transactions on Medical Imaging 29(1), 77–95 (2010)

    Article  Google Scholar 

  10. Lamecker, H., Pennec, X., et al: Atlas to image-with-tumor registration based on demons and deformation inpainting. In: Proc. MICCAI Workshop on Computational Imaging Biomarkers for Tumors-From Qualitative to Quantitative, CIBT. Citeseer (2010)

    Google Scholar 

  11. Mandonnet, E., Delattre, J.Y., Tanguy, M.L., Swanson, K.R., Carpentier, A.F., Duffau, H., Cornu, P., Van Effenterre, R., Alvord Jr., E.C., Capelle, L.: Continuous growth of mean tumor diameter in a subset of grade ii gliomas. Annals of Neurology 53(4), 524–528 (2003)

    Article  Google Scholar 

  12. Menze, B.H., Stretton, E., Konukoglu, E., Ayache, N.: Image-based modeling of tumor growth in patients with glioma. In: Optimal Control in Image Processing, Springer, Heidelberg (2011)

    Google Scholar 

  13. Menze, B.H., Van Leemput, K., Honkela, A., Konukoglu, E., Weber, M.-A., Ayache, N., Golland, P.: A Generative Approach for Image-Based Modeling of Tumor Growth. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 735–747. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Sanai, N., Berger, M.S.: Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4), 753 (2008)

    Article  Google Scholar 

  15. Sawaya, R.: Extent of resection in malignant gliomas: a critical summary. Journal of Neuro-Oncology 42(3), 303–305 (1999)

    Article  Google Scholar 

  16. Swanson, K.R., Rostomily, R.C., Alvord, E.C.: A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. British Journal of Cancer 98(1), 113–119 (2007)

    Article  Google Scholar 

  17. Tracqui, P., Cruywagen, G.C., Woodward, D.E., Bartoo, G.T., Murray, J.D., Alvord Jr., E.C.: A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Proliferation 28(1), 17–31 (1995)

    Article  Google Scholar 

  18. Zacharaki, E., Hogea, C., Shen, D., Biros, G., Davatzikos, C.: Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. Neuroimage 46, 762–774 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stretton, E., Mandonnet, E., Geremia, E., Menze, B.H., Delingette, H., Ayache, N. (2012). Predicting the Location of Glioma Recurrence after a Resection Surgery. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M. (eds) Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data. STIA 2012. Lecture Notes in Computer Science, vol 7570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33555-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33555-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33554-9

  • Online ISBN: 978-3-642-33555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics