Skip to main content

Free Infinitely Divisible Approximations of n-Fold Free Convolutions

  • Conference paper
  • First Online:
Prokhorov and Contemporary Probability Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 33))

Abstract

Based on the method of subordinating functions we prove a free analog of error bounds in classical Probability Theory for the approximation of n-fold convolutions of probability measures by infinitely divisible distributions.

Mathematics Subject Classification (2010): 46L53, 46L54, 60E07

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhiezer, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner, New York (1965)

    MATH  Google Scholar 

  2. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Ungar, New York (1963)

    Google Scholar 

  3. Arak, T.V.: On the rate of convergence in Kolmogorov’s uniform limit theorem, I, II. Theory Probab. Appl. 26(2), 219–239 (1981); 36(3), 437–451 (1981)

    Google Scholar 

  4. Arak, T.V.: An improvement of the lower bound for the rate of convergence in Kolmogorov’s uniform limit theorem. Theory Probab. Appl. 27(4), 826–832 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arak, T.V., Zaitsev, A.Yu.: Uniform Limit Theorems for Sums of Independent Random Variables. Proceedings of the Steklov Institute of Mathematics, Issue 1. American Mathematical Society, Providence (1988)

    Google Scholar 

  6. Belinschi, S.T., Bercovici, H.: Atoms and regularity for measures in a partially defined free convolution semigroup. Math. Z. 248, 665–674 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belinschi, S.T., Bercovici, H.: A new approach to subordination results in free probability. J. Anal. Math. 101, 357–365 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Belinschi, S.T.: The Lebesgue decomposition of the free additive convolution of two probability distributions. Probab. Theory Relat. Fields 142, 125–150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42, 733–773 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bercovici, H., Pata, V.: Stable laws and domains of attraction in free probability theory. Ann. Math. 149, 1023–1060 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biane, Ph.: Processes with free increments. Math. Z. 227, 143–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chistyakov, G.P.: Bounds for approximations of n-fold convolutions of distributions with unlimited divisibility and the moment problem. J. Math. Sci. 76(4), 2493–2511 (1995)

    Article  MathSciNet  Google Scholar 

  13. Chistyakov, G.P., Götze, F.: The arithmetic of distributions in free probability theory. Cent. Eur. J. Math. 9(5),997–1050 (2011). DOI: 10.2478/s11533-011-0049-4, ArXiv: math/0508245

    Article  MathSciNet  MATH  Google Scholar 

  14. Chistyakov, G.P., Götze, F.: Limit theorems in free probability theory, I. Ann. Probab. 36, 54–90 (2008)

    Article  MATH  Google Scholar 

  15. Doeblin, W.: Sur les sommes d’un grand nombre de variables aléatoires indépendantes. Bull. Sci. Math. 63(2), 23–32, 35–64 (1939)

    Google Scholar 

  16. Goluzin, G.M.: Geometric Theory of Functions of a Complex Variable. American Mathematical Socity, Providence (1969)

    MATH  Google Scholar 

  17. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs, vol. 77. American Mathematical Socity, Providence (2000)

    Google Scholar 

  18. Kargin, V.: Berry–Essen for free random variables. J. Theor. Probab. 20, 381–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmogorov, A.N.: On some work of recent years in the area of limit theorems of probability theory. (Russian) Vestnik Moskov. Univ., No. 10 (Ser. Fiz-Mat. i Estestv. Nauk vyp. 7), 29–38 (1953)

    Google Scholar 

  20. Kolmogorov, A.N.: Two uniform limit theorems for sums of independent terms. Theory Probab. Appl. 1(4), 384–394 (1956)

    Article  Google Scholar 

  21. Maassen, H.: Addition of freely independent random variables. J. Funct. Anal. 106, 409–438 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pata, V.: Domains of partial attraction in noncommutative probability. Pac. J. Math. 176, 235–248 (1996)

    MathSciNet  Google Scholar 

  23. Prokhorov, Yu.V.: On sums of identically distributed variables. (Russian) Dokl. Akad. Nauk SSSR 105(4), 645–647 (1955)

    Google Scholar 

  24. Speicher, R.: Combinatorical theory of the free product with amalgamation and operator-valued free probability theory. Mem. Am. Math. Soc. 132, No. 627 (1998)

    Google Scholar 

  25. Voiculescu, D.V.: Addition of certain noncommuting random variables. J. Funct. Anal. 66, 323–346 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Voiculesku, D., Dykema, K., Nica, A.: Free Random Variables. CRM Monograph Series, vol. 1. American Mathematical Society, Providence (1992)

    Google Scholar 

  27. Voiculescu, D.V.: The analogues of entropy and Fisher’s information measure in free probability theory. I. Commun. Math. Phys. 155, 71–92 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zaitsev, A.Yu.: An example of a distribution whose set of n-fold convolutions is uniformly separated from the set of infinitely divisible laws in distance in variation. Theory Probab. Appl. 36(2), 419–425 (1991)

    Article  MathSciNet  Google Scholar 

  29. Zaitsev, A.Yu.: Approximation of convolutions by accompanying laws under the existence of moments of low orders. Zap. Nauchn. Sem. POMI, 228, 135–141 (1996)

    Google Scholar 

Download references

Acknowledgements

This research was supported by CRC 701, Bielefeld University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadii Chistyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chistyakov, G., Götze, F. (2013). Free Infinitely Divisible Approximations of n-Fold Free Convolutions. In: Shiryaev, A., Varadhan, S., Presman, E. (eds) Prokhorov and Contemporary Probability Theory. Springer Proceedings in Mathematics & Statistics, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33549-5_12

Download citation

Publish with us

Policies and ethics