Terminating Population Protocols via Some Minimal Global Knowledge Assumptions

  • Othon Michail
  • Ioannis Chatzigiannakis
  • Paul G. Spirakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7596)


We extend the population protocol model with a cover-time service that informs a walking state every time it covers the whole network. This is simply a known upper bound on the cover time of a random walk. This allows us to introduce termination into population protocols, a capability that is crucial for any distributed system. By reduction to an oracle-model we arrive at a very satisfactory lower bound on the computational power of the model: we prove that it is at least as strong as a Turing Machine of space logn with input commutativity, where n is the number of nodes in the network. We also give a logn-space, but nondeterministic this time, upper bound. Finally, we prove interesting similarities of this model to linear bounded automata.


Turing Machine Unique Leader Cover Time Input Symbol Counter Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAC+05]
    Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably Computable Properties of Network Graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. [AAD+06]
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing, 235–253 (2006)Google Scholar
  3. [AAE08]
    Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distributed Computing 21(3), 183–199 (2008)CrossRefGoogle Scholar
  4. [AAER07]
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)CrossRefGoogle Scholar
  5. [BBCK10]
    Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks of mobile agents. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2010, pp. 305–314. ACM, New York (2010)CrossRefGoogle Scholar
  6. [CMN+11]
    Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Passively mobile communicating machines that use restricted space. Theor. Comput. Sci. 412(46), 6469–6483 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [CVMVM01]
    Csuhaj-Varjú, E., Martín-Vide, C., Mitrana, V.: Multiset Automata. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 69–84. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. [Edi86]
    Edighoffer, J.L.: Distributed, replicated computer bulletin board service. PhD thesis, Stanford, CA, USA, UMI order no. GAX86-19742 (1986)Google Scholar
  9. [FJ06]
    Fischer, M., Jiang, H.: Self-stabilizing Leader Election in Networks of Finite-State Anonymous Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006), CrossRefGoogle Scholar
  10. [FMR68]
    Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter languages. Mathematical Systems Theory 2(3), 265–283 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [GS66]
    Ginsburg, S., Spanier, E.H.: Semigroups, presburger formulas, and languages. Pacific Journal of Mathematics 16, 285–296 (1966)MathSciNetzbMATHGoogle Scholar
  12. [Iba04]
    Ibarra, O.H.: On the computational complexity of membrane systems. Theor. Comput. Sci. 320, 89–109 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. [MCS11a]
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theor. Comput. Sci. 412, 2434–2450 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [MCS11b]
    Michail, O., Chatzigiannakis, I., Spirakis, P.G.: New Models for Population Protocols. In: Lynch, N.A. (ed.) Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2011)Google Scholar
  15. [Min61]
    Minsky, M.L.: Recursive unsolvability of post’s problem of “tag” and other topics in theory of turing machines. The Annals of Mathematics 74(3), 437–455 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  16. [Sav70]
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. System Sci. 4(2), 177–192 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  17. [Vas08]
    Vaszil, G.: Multiset grammars, multiset automata, and membrane systems. In: Colloquium on the Occasion of the 50th Birthday of Victor Mitrana, pp. 1–10. Springer (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Othon Michail
    • 1
    • 2
  • Ioannis Chatzigiannakis
    • 1
    • 2
  • Paul G. Spirakis
    • 1
    • 2
  1. 1.Computer Technology Institute & Press “Diophantus” (CTI)PatrasGreece
  2. 2.Computer Engineering and Informatics Department (CEID)University of PatrasGreece

Personalised recommendations