Fault-Tolerant Exploration of an Unknown Dangerous Graph by Scattered Agents

  • Paola Flocchini
  • Matthew Kellett
  • Peter C. Mason
  • Nicola Santoro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7596)


Black hole search (Bhs) is the problem of mapping or exploring a network where there are dangerous sites (black holes) that eliminate any incoming searcher without leaving a discernible trace. Dangerous graph exploration (Dge) extends the Bhs problem to include dangerous links (black links). In the literature, both problems have only been studied under the assumption that no faults occur in the network during the exploration. In this paper, we examine the impact that link failures can have on the exploration of dangerous graphs. We study the Dge problem under the following conditions: there are multiple black holes and black links, the network topology is unknown, the searchers are initially scattered in arbitrary locations, and the system is totally asynchronous. In this difficult setting, we assume that links can fail during the computation. We present an algorithm that solves the Dge in the presence of such dynamic link failures. Our solution to the problem works with an optimum number of searchers in a polynomial number of moves. This is the first result dealing with fault-tolerant computations in dangerous graphs.


Black Hole Mobile Agent Link Failure Internal Link External Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Time Optimal Algorithms for Black Hole Search in Rings. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 58–71. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Improving the Optimal Bounds for Black Hole Search in Rings. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 198–209. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight Bounds for Scattered Black Hole Search in a Ring. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 186–197. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Chalopin, J., Das, S., Santoro, N.: Rendezvous of Mobile Agents in Unknown Graphs with Faulty Links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Cooper, C., Klasing, R., Radzik, T.: Searching for Black-Hole Faults in a Network Using Multiple Agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 320–332. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Czyzowicz, J., Dobrev, S., Královič, R., Miklík, S., Pardubská, D.: Black Hole Search in Directed Graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 182–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a black hole. Fund. Inform. 71(2,3), 229–242 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dobrev, S., Flocchini, P., Královič, R., Ružička, P., Prencipe, G., Santoro, N.: Black hole search in common interconnection networks. Networks 47(2), 61–71 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: Optimal mobile agents protocols. Distrib. Comput. 19(1), 1–19 (2006)CrossRefGoogle Scholar
  10. 10.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–90 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal black hole search with pebbles. Algorithmica 62(3–4), 1006–1033 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Map construction and exploration by mobile agents scattered in a dangerous network. In: Proceedings of IPDPS (2009)Google Scholar
  13. 13.
    Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Searching for black holes in subways. Theory Comput. 50(1), 158–184 (2012)MathSciNetGoogle Scholar
  14. 14.
    Glaus, P.: Locating a Black Hole without the Knowledge of Incoming Link. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 128–138. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary networks. Comput. Sci. 384(2-3), 201–221 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black hole search problems. Networks 52(4), 216–226 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kosowski, A., Navarra, A., Pinotti, C.M.: Synchronous black hole search in directed graphs. Theor. Comput. Sci. 412(41), 5752–5759 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Královič, R., Miklík, S.: Periodic Data Retrieval Problem in Rings Containing a Malicious Host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 157–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Miklík, S.: Exploration in faulty networks. Ph.d. thesis, Faculty of Mathematics, Physics, and Informaticcs, Comenius University, Bratislava, Slovakia (2010)Google Scholar
  20. 20.
    Shannon, C.: Presentation of a maze-solving machine. In: Proceedings of the 8th Conference of the Josiah Macy Jr. Foundation (Cybernetics), pp. 173–180 (1951)Google Scholar
  21. 21.
    Shi, W.: Black Hole Search with Tokens in Interconnected Networks. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paola Flocchini
    • 1
  • Matthew Kellett
    • 2
  • Peter C. Mason
    • 2
  • Nicola Santoro
    • 3
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaCanada
  2. 2.Defence R&D Canada – OttawaGovernment of CanadaCanada
  3. 3.School of Computer ScienceCarleton UniversityCanada

Personalised recommendations