Self-stabilizing Algorithm for Maximal Graph Partitioning into Triangles

  • Brahim Neggazi
  • Mohammed Haddad
  • Hamamache Kheddouci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7596)


The graph partitioning problem consists of dividing a graph into parts, patterns or partitions which satisfy some specifications. Graph partitioning problems are known to be NP-complete. In this paper, we focus on the particular pattern of triangles and present the first Self-stabilizing algorithm for Maximal Partitioning of arbitrary graphs into Triangles (MPT). Then, we give the correctness and convergence proofs of the proposed algorithm.


Graph partitioning Independent triangles Self-stabilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Azemi, F.M., Karaata, M.H.: Brief Announcement: A Stabilizing Algorithm for Finding Two Edge-Disjoint Paths in Arbitrary Graphs. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 433–434. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Andreev, K., Räcke, H.: Balanced graph partitioning. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2004, pp. 120–124 (2004)Google Scholar
  3. 3.
    Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-Stabilizing Local Mutual Exclusion and Daemon Refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster algorithm in mobile ad hoc networks. In: ISPAN, pp. 436–441 (2005)Google Scholar
  5. 5.
    Belkouch, F., Bui, M., Chen, L., Datta, A.K.: Self-stabilizing deterministic network decomposition. J. Parallel Distrib. Comput. 62(4), 696–714 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-Free Super-Stabilizing Spanning Tree Construction. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: A Self-stabilizing K-Clustering Algorithm Using an Arbitrary Metric. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 602–614. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dolev, S.: Self-stabilization. MIT Press (2000)Google Scholar
  10. 10.
    Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. CoRR, abs/1110.0334 (2011)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  12. 12.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Anonymous Daemon Conversion in Self-stabilizing Algorithms by Randomization in Constant Space. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 182–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: A robust distributed generalized matching protocol that stabilizes in linear time. In: ICDCS Workshops, pp. 461–465 (2003)Google Scholar
  14. 14.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing protocols for maximal matching and maximal independent sets for ad hoc networks. In: IPDPS, p. 162 (2003)Google Scholar
  15. 15.
    Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness assumption. In: Proceedings of the 27th International Conference on Distributed Computing Systems, ICDCS 2007, Washington, DC, USA, p. 46 (2007)Google Scholar
  16. 16.
    Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for independence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput. (4), 406–415 (2010)CrossRefGoogle Scholar
  17. 17.
    Hadid, R., Karaata, M.H.: An adaptive stabilizing algorithm for finding all disjoint paths in anonymous mesh networks. Computer Communications 32(5), 858–866 (2009)CrossRefGoogle Scholar
  18. 18.
    Hadid, R., Karaata, M.H.: Stabilizing maximum matching in bipartite networks. Computing 84(1-2), 121–138 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Karaata, M.H.: An optimal self-stabilizing strarvation-free alternator. J. Comput. Syst. Sci. 71(4), 480–494 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time o(m). Inf. Process. Lett. 80(5), 221–223 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf. Process. Lett. 43(2), 77–81 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Ishii, H., Kakugawa, H.: A self-stabilizing algorithm for finding cliques in distributed systems. In: IEEE Symposium on Reliable Distributed Systems, vol. 0, p. 390 (2002)Google Scholar
  23. 23.
    Karaata, M.H., Hadid, R.: Brief Announcement: A Stabilizing Algorithm for Finding Two Disjoint Paths in Arbitrary Networks. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 789–790. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal matching algorithm. Theor. Comput. Sci. 410(14), 1336–1345 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pothen, A.: Graph partitioning algorithms with applications to scientific computing. Technical report, Norfolk, VA, USA (1997)Google Scholar
  26. 26.
    Serrour, B., Arenas, A., Gomez, S.: Detecting communities of triangles in complex networks using spectral optimization. Computer Communications 34(5), 629–634 (2011)CrossRefGoogle Scholar
  27. 27.
    Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6), 271–272 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Brahim Neggazi
    • 1
  • Mohammed Haddad
    • 1
  • Hamamache Kheddouci
    • 1
  1. 1.GAMA Lab.University of Lyon, Claude Bernard Lyon 1 UniversityVilleurbanneFrance

Personalised recommendations