Skip to main content

Scalable Byzantine Agreement with a Random Beacon

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7596))

Included in the following conference series:

Abstract

We present two Monte Carlo algorithms for efficiently computing Byzantine agreement in the partially synchronous communication model. The algorithms assume the existence of a Random Beacon, which is a stream of random bits, known to all the processors. Both algorithms terminate in O(1) expected time. The first algorithm sends O(M + nlog2 n) messages in total, where M is the maximum number of messages sent by the bad processors in any round and n is the number of processors. It ensures all processors reach agreement. The second algorithm sends \(\tilde{O}(1)\) messages per processor, and is thus load-balanced, and ensures all but a o(1) fraction of the processors reach agreement. Both algorithms succeed with probability 1 − O(1/n k), even against an adaptive adversary that takes over up to a 1/3 − ε fraction of the processors for any ε > 0. We prove the correctness of both algorithms and provide empirical evidence that they require significantly less bandwidth than previous algorithms for networks of size greater than 4,000 processors. Our algorithms work in the full-information model and thus make no cryptographic assumptions.

This research was partially supported by NSF CAREER Award 0644058, NSF CCR-0313160, and an AFOSR MURI grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lesk, M.: Cybersecurity and economics. IEEE Security Privacy 9(6), 76–79 (2011)

    Article  Google Scholar 

  2. (GAO), U.G.A.O.: Cybercrime: Public and private entities face challenges in addressing cyber threats (June 2007)

    Google Scholar 

  3. Rabin, M.O.: Transaction protection by beacons. Journal of Computer and System Sciences 27, 256–267 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryptology 5, 53–66 (1992)

    MATH  Google Scholar 

  5. Cachin, C., Maurer, U.M.: Unconditional Security against Memory-Bounded Adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306. Springer, Heidelberg (1997)

    Google Scholar 

  6. Aumann, Y., Rabin, M.O.: Information Theoretically Secure Communication in the Limited Storage Space Model. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 65–79. Springer, Heidelberg (1999)

    Google Scholar 

  7. Dziembowski, S., Maurer, U.: Tight security proofs for the bounded-storage model. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC 2002, pp. 341–350. ACM, New York (2002)

    Chapter  Google Scholar 

  8. Lysyanskaya, A.: Efficient threshold and proactive cryptography secure against the adaptive adversary (extended abstract)

    Google Scholar 

  9. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolev, D.: The byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement. J. ACM 32(1), 191–204 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rabin, M.: Randomized Byzantine generals. In: Proc. Symposium on Foundations of Computer Science, pp. 403–409 (1983)

    Google Scholar 

  14. Karlin, A., Yao., A.C.C.: Probabilistic lower bounds for byzantine agreement. Manuscript (1986)

    Google Scholar 

  15. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzantine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. King, V., Saia, J.: Breaking the O(n 2) bit barrier: scalable byzantine agreement with an adaptive adversary. In: PODC, pp. 420–429. ACM (2010)

    Google Scholar 

  17. King, V., Saia, J.: From almost everywhere to everywhere: Byzantine agreement with \(\tilde{O}(n^{3/2})\) bits. In: To appear in Proceedings of DISC 2009: 23rd International Symposium on Distributed Computing, Elche/Elx, Spain, September 23-25 (2009)

    Google Scholar 

  18. Oluwasanmi, O., Saia, J., King, V.: An empirical study of a scalable byzantine agreement algorithm. In: 2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–13 (April 2010)

    Google Scholar 

  19. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of bounded degree. In: STOC 1986: Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pp. 370–379. ACM Press, New York (1986)

    Chapter  Google Scholar 

  20. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantipole: practical asynchronous byzantine agreement using cryptography (extended abstract). In: PODC 2000: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 123–132. ACM Press, New York (2000)

    Chapter  Google Scholar 

  21. Lee, H.H., Chang, E.-c., Chan, M.C.: Pervasive Random Beacon in the Internet for Covert Coordination. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 53–61. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. In: Proceedings of the 2010 International Conference on Electronic Voting Technology/Workshop on Trustworthy Elections, EVT/WOTE 2010, pp. 1–8. USENIX Association, Berkeley (2010)

    Google Scholar 

  23. Eastlake 3rd, D.: Publicly Verifiable Nomcom Random Selection. RFC 2777 (Informational) (February 2000), Obsoleted by RFC 3797

    Google Scholar 

  24. Eastlake 3rd, D.: Publicly Verifiable Nominations Committee (NomCom) Random Selection. RFC 3797 (Informational) (June 2004)

    Google Scholar 

  25. Bhatele, A., Laxmikant, V.: An evaluative study on the effect of contention on message latencies in large supercomputers. In: Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing, pp. 1–8. IEEE Computer Society Press, Washington, DC (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oluwasanmi, O., Saia, J. (2012). Scalable Byzantine Agreement with a Random Beacon. In: Richa, A.W., Scheideler, C. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2012. Lecture Notes in Computer Science, vol 7596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33536-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33536-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33535-8

  • Online ISBN: 978-3-642-33536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics