BLIP: Non-interactive Differentially-Private Similarity Computation on Bloom filters

  • Mohammad Alaggan
  • Sébastien Gambs
  • Anne-Marie Kermarrec
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7596)


In this paper, we consider the scenario in which the profile of a user is represented in a compact way, as a Bloom filter, and the main objective is to privately compute in a distributed manner the similarity between users by relying only on the Bloom filter representation. In particular, we aim at providing a high level of privacy with respect to the profile even if a potentially unbounded number of similarity computations take place, thus calling for a non-interactive mechanism. To achieve this, we propose a novel non-interactive differentially private mechanism called BLIP (for BLoom-and-flIP) for randomizing Bloom filters. This approach relies on a bit flipping mechanism and offers high privacy guarantees while maintaining a small communication cost. Another advantage of this non-interactive mechanism is that similarity computation can take place even when the user is offline, which is impossible to achieve with interactive mechanisms. Another of our contributions is the definition of a probabilistic inference attack, called the “Profile Reconstruction attack”, that can be used to reconstruct the profile of an individual from his Bloom filter representation. More specifically, we provide an analysis of the protection offered by BLIP against this profile reconstruction attack by deriving an upper and lower bound for the required value of the differential privacy parameter ε.


Hash Function Cosine Similarity Bloom Filter Inference Attack Differential Privacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: On the Relation between Differential Privacy and Quantitative Information Flow. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 60–76. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Amer-Yahia, S., Benedikt, M., Lakshmanan, L.V.S., Stoyanovich, J.: Efficient network aware search in collaborative tagging sites. PVLDB 2008, 1(1) (August 2008)Google Scholar
  3. 3.
    Bawa, M., Bayardo, R.J., Agrawal, R., Vaidya, J.: Privacy-preserving indexing of documents on the network. The VLDB Journal 18(4), 837–856 (2009)CrossRefGoogle Scholar
  4. 4.
    Beimel, A., Nissim, K., Omri, E.: Distributed Private Data Analysis: Simultaneously Solving How and What. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 451–468. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Bellovin, S.M., Cheswick, W.R.: Privacy-enhanced searches using encrypted Bloom filters. Tech. rep., Columbia University CUCS-034-07 (2007)Google Scholar
  6. 6.
    Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.M., Leroy, V.: The Gossple anonymous social network. In: Proceedings of the 11th International Middleware Conference (Middleware 2010), ACM/IFIP/USENIX, Bangalore, India, November 29 - December 3, pp. 191–211 (2010)Google Scholar
  7. 7.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)zbMATHCrossRefGoogle Scholar
  8. 8.
    Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 609–618. ACM, Victoria (2008)Google Scholar
  9. 9.
    Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid, M., Tang, Y.: On the false-positive rate of Bloom filters. Information Processing Letters 108(4), 210–213 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Dwork, C., Naor, M.: On the difficulties of disclosure prevention in statistical databases or the case for differential privacy. Journal of Privacy and Confidentiality 2(1), 93–107 (2010)Google Scholar
  13. 13.
    Goh, E.J.: Secure indexes. Tech. rep., Cryptology ePrint Archive 2003/216 (March 16, 2004)Google Scholar
  14. 14.
    Götz, M., Machanavajjhala, A., Wang, G., Xiao, X., Gehrke, J.: Privacy in search logs. CoRR abs/0904.0682 (2009)Google Scholar
  15. 15.
    Jelasity, M., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: The Peer Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Implementations. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 79–98. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Kerschbaum, F.: Public-Key Encrypted Bloom Filters with Applications to Supply Chain Integrity. In: Li, Y. (ed.) DBSec. LNCS, vol. 6818, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Lee, J., Clifton, C.: How Much Is Enough? Choosing ε for Differential Privacy. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 325–340. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Li, Y.D., Zhang, Z., Winslett, M., Yang, Y.: Compressive mechanism: utilizing sparse representation in differential privacy. CoRR abs/1107.3350 (2011)Google Scholar
  19. 19.
    McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), Providence, RI, USA, October 20-23, pp. 94–103 (2007)Google Scholar
  20. 20.
    Mironov, I., Pandey, O., Reingold, O., Vadhan, S.P.: Computational Differential Privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Pon, R.K., Critchlow, T.: Performance-Oriented Privacy-Preserving Data Integration. In: Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 240–256. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Shikfa, A., Önen, M., Molva, R.: Broker-Based Private Matching. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 264–284. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of Bloom filters for distributed systems. IEEE Communications Surveys & Tutorials (99), 1–25 (2011)Google Scholar
  24. 24.
    Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60(309), 63–69 (1965)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammad Alaggan
    • 1
  • Sébastien Gambs
    • 1
  • Anne-Marie Kermarrec
    • 2
  1. 1.Université de Rennes 1 – INRIA/IRISARennesFrance
  2. 2.INRIA Rennes Bretagne-AtlantiqueRennesFrance

Personalised recommendations