From Self- to Self-stabilizing with Service Guarantee 1-hop Weight-Based Clustering

  • Colette Johnen
  • Fouzi Mekhaldi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7596)


We propose a transformer building a silent self-stabilizing with service guarantee 1-hop clustering protocol \(\mathcal{TP}\) of an input silent self-stabilizing 1-hop clustering protocol \(\mathcal{P}\). From an arbitrary configuration, \(\mathcal{TP}\) reaches a safe configuration in at most 3 rounds, where the following useful minimal service is provided: “each node belongs to a 1-hop cluster having an effective leader”. During stabilization of \(\mathcal{TP}\), the minimal service is preserved, so the clustering structure is available throughout the entire network. The minimal service is also maintained despite the occurrences of some external disruptions, called highly tolerated disruptions, denoted \(\mathcal{HTD}\). \(\mathcal{TP}\) reaches a terminal (also legitimate) configuration in at most \(4*S_\mathcal{P}\) rounds where \(S_\mathcal{P}\) is the stabilization time of \(\mathcal{P}\) protocol. Moreover, \(\mathcal{TP}\) requires only 2 bits per node more than \(\mathcal{P}\).


Computation Step Safety Property Service Guarantee Election Rule Ordinary Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basagni, S.: Distributed and mobility-adaptive clustering for multimedia support in multi-hop wireless networks. In: International Vehicular Technology Conference (VTC 1999), pp. 889–893 (1999)Google Scholar
  2. 2.
    Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster algorithm in mobile ad hoc networks. In: International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN 2005), pp. 436–441 (2005)Google Scholar
  3. 3.
    Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-Free Super-Stabilizing Spanning Tree Construction. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree networks. Distributed Computing 20, 3–19 (2007)Google Scholar
  5. 5.
    Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: self-stabilizing k-clustering algorithm for weighted graphs. Journal of Parallel and Distributed Computing 70, 1159–1173 (2010)zbMATHCrossRefGoogle Scholar
  6. 6.
    Chatterjee, M., Das, S.K., Turgut, D.: WCA: A weighted clustering algorithm for mobile ad hoc networks. Journal of Cluster Computing 5(2), 193–204 (2002)CrossRefGoogle Scholar
  7. 7.
    Cournier, A., Datta, A.K., Petit, F., Villain, V.: Enabling snap-stabilization. In: Conference on Distributed Computing Systems (ICDCS 2003), pp. 12–19 (2003)Google Scholar
  8. 8.
    Cournier, A., Devismes, S., Villain, V.: From Self- to Snap- Stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 199–213. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Datta, A.K., Larmore, L.L., Vemula, P.: A self-stabilizing o(k)-time k-clustering algorithm. The Computer Journal 53, 342–350 (2010)CrossRefGoogle Scholar
  10. 10.
    Delaët, S., Devismes, S., Nesterenko, M., Tixeuil, S.: Snap-Stabilization in Message-Passing Systems. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 281–286. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Demirbas, M., Arora, A., Mittal, V., Kulathumani, V.: A fault-local self-stabilizing clustering service for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems 17, 912–922 (2006)CrossRefGoogle Scholar
  12. 12.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  13. 13.
    Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems. Chicago J. Theor. Comput. Sci. (1997)Google Scholar
  14. 14.
    Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing distributed algorithm. Theoretical Computer Science 410, 514–532 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Drabkin, V., Friedman, R., Gradinariu, M.: Self-stabilizing Wireless Connected Overlays. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 425–439. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Gerla, M., Tsai, J.T.: Multicluster, mobile, multimedia radio network. Journal of Wireless Networks 1(3), 255–265 (1995)CrossRefGoogle Scholar
  17. 17.
    Johnen, C., Mekhaldi, F.: Robust Self-stabilizing Construction of Bounded Size Weight-Based Clusters. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 535–546. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Johnen, C., Mekhaldi, F.: Self-stabilizing computation and preservation of knowledge of neighbor clusters. In: IEEE International Conferences on Self-Adaptive and Self-Organizing Systems (SASO 2011), pp. 41–50 (2011)Google Scholar
  19. 19.
    Johnen, C., Mekhaldi, F.: From self- to self-stabilizing with service guarantee 1-hop weight-based clustering. Technical Report RR1462-12, LaBRI (2012),
  20. 20.
    Johnen, C., Nguyen, L.H.: Self-stabilizing construction of bounded size clusters. In: International Symposium on Parallel and Distributed Processing with applications (ISPA 2008), pp. 43–50 (2008)Google Scholar
  21. 21.
    Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algorithm. Theoretical Computer Science 410(6-7), 581–594 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kamei, S., Kakugawa, H.: A Self-stabilizing Approximation for the Minimum Connected Dominating Set with Safe Convergence. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 496–511. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Katz, S., Perry, K.J.: Self-stabilizing extensions for meassage-passing systems. Distributed Computing 7, 17–26 (1993)CrossRefGoogle Scholar
  24. 24.
    Mitton, N., Fleury, E., Guérin-Lassous, I., Tixeuil, S.: Self-stabilization in self-organized multihop wireless networks. In: International Conference on Distributed Computing Systems Workshops (WWAN 2005), pp. 909–915 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Colette Johnen
    • 1
  • Fouzi Mekhaldi
    • 1
  1. 1.LaBRIUniversity of Bordeaux, CNRSTalence CedexFrance

Personalised recommendations