Skip to main content

Self-stabilizing Distributed Data Fusion

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7596))

Included in the following conference series:

Abstract

The Theory of Belief Functions is a formal framework for reasoning with uncertainty that is well suited for representing unreliable information and weak states of knowledge. In information fusion applications, it is mainly used in a centralized way, by gathering the data on a single node before computation.

In this paper, a distributed algorithm is proposed to compute the neighborhood confidence of each node, by combining all the data of its neighbors using an adaptation of the well known Dempster’s rule. Moreover, a distributed algorithm is proposed to compute the distributed confidence of each node, by combining all the data of the network using an adaptation of the cautious operator. Then, it is shown that when adding a discounting to the cautious operator, it becomes an r-operator and the distributed algorithm becomes self-stabilizing. This means that it converges in finite time despite transient faults.

Using this approach, uncertain and imprecise distributed data can be processed over a network without gathering them on a central node, even on a network subject to failures, saving important computing and networking resources. Moreover, our algorithms converge in finite time whatever is the initialization of the system and for any unknown topology.

This contribution leads to new interesting distributed applications dealing with uncertain and imprecise data. This is illustrated in the paper: an application for sensors networks is detailed all along the paper to ease the understanding of the formal approach and to show its interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. Journal of the ACM 1(42), 124–142 (1995)

    Article  Google Scholar 

  2. Cherfaoui, V., Denoeux, T., Cherfi, Z.-L.: Confidence management in Vehicular Network. In: Vehicular Networks: Techniques, Standards, and Applications, pp. 357–378, CRC Press (2009) ISBN: 9781420085716

    Google Scholar 

  3. Cherfaoui, V., Denoeux, T., Cherfi, Z.L.: Distributed data fusion: application to confidence management in vehicular networks. In: Proceedings of the 11th International Conference on Information Fusion (FUSION 2008), Germany (2008)

    Google Scholar 

  4. Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited. Journal of Aerospace Computing, Information, and Com. (2006)

    Google Scholar 

  5. Dempster, A.P.: A generalization of bayesian inference. Journal of the Royal Statistical Society 30, 205–247 (1968)

    MathSciNet  Google Scholar 

  6. Denœux, T.: Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence. Artificial Intelligence 172, 234–264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dieudonné, Y., Ducourthial, B., Senouci, S.-M.: Design and experimentation of a self-stabilizing data collection protocol for vehicular ad-hoc networks. In: IEEE Intelligent Vehicle Symposium 2012, Madrid (June 2012)

    Google Scholar 

  8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  9. Dolev, S.: Self-Stabilization. MIT Press (2000)

    Google Scholar 

  10. Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Computer intelligence 4, 244–264 (1988)

    Article  Google Scholar 

  11. Dubois, S.: Tolerating Transient, Permanent, and Intermittent Failures. PhD thesis, Université Pierre et Marie Curie, Paris, France (2011)

    Google Scholar 

  12. Ducourthial, B.: r-Semi-Groups: A Generic Approach for Designing Stabilizing Silent Tasks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 281–295. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Ducourthial, B., Tixeuil, S.: Self-stabilization with path algebra. Theor. Comput. Sci. 293(1), 219–236 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Distributed Computing 14(3), 147–162 (2001)

    Article  Google Scholar 

  15. Gasparri, A., Fiorini, F., Di Rocco, M., Panzieri, S.: A networked transferable belief model approach for distributed data aggregation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (99) (2011)

    Google Scholar 

  16. Hall, D.L., Llinas, J.: Handbook of Multisensor Data Fusion. CRC Press (2001)

    Google Scholar 

  17. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory 29(1), 23–34 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shafer, G.: A mathematical theory of evidence. Princeton, N.J. (1976)

    MATH  Google Scholar 

  19. Smets, P.: The combination of evidence in the Ttransferable Belief Model. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 447–458 (1990)

    Article  Google Scholar 

  20. Smets, P.: The canonical decomposition of a weighted belief. In: Int. Joint Conf. on Artificial Intelligence, pp. 1896–1901. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  21. Smets, P.: Data fusion in the transferable belief model. In: Proceedings of. 3rd Intern. Conf. Information Fusion, Paris, France (2000)

    Google Scholar 

  22. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. Int. Journal of Approximate Reasoning 38, 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tel, G.: Topics in Distributed Algorithms. Cambridge International Series on Parallel Computation, vol. 1. Cambridge University Press (1991)

    Google Scholar 

  25. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press (1994)

    Google Scholar 

  26. El Zoghby, N., Cherfaoui, V., Ducourthial, B., Denœux, T.: Distributed Data Fusion for Detecting Sybil Attacks in VANETs. In: Denœux, T., Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC, vol. 164, pp. 351–358. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ducourthial, B., Cherfaoui, V., Denoeux, T. (2012). Self-stabilizing Distributed Data Fusion. In: Richa, A.W., Scheideler, C. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2012. Lecture Notes in Computer Science, vol 7596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33536-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33536-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33535-8

  • Online ISBN: 978-3-642-33536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics