Skip to main content

Model Identification and \(\mathcal{H}_{\infty}\) Attitude Control for Quadrotor MAV’s

  • Conference paper
Book cover Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7507))

Included in the following conference series:

Abstract

This paper presents the results of modelling, parameter identification and control of the rotational axes of a quadrotor robot. The modelling is done in Newton-Euler Formalism and has been published before. Contrarily, our method uses a Grey-Box-based, iterative parameter identification approach, the results of which can easily be reproduced and offers great accuracy. By neglecting nonlinear and cross-coupling effects, only three to four parameters have to be identified per axis, depending on the order of the motor dynamics. Based on the achieved results we were able to design an aggressive \(\mathcal{H_{\infty}}\) attitude controller, which shows superior performance to the normal PID-like controllers. With an anti-windup compensator based on Riccati–equations we are able to show exceptional input disturbance rejection, even with disturbances saturating the engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP Multiple Micro-UAV Testbed. IEEE Robotics & Automation Magazine 17(3), 56–65 (2010)

    Article  Google Scholar 

  2. Lupashin, S., Schollig, A., Hehn, M., D’Andrea, R.: The Flying Machine Arena as of 2010. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2970–2971. IEEE (2011)

    Google Scholar 

  3. Hoffmann, G., Huang, H., Waslander, S., Tomlin, C.: Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, vol. 4, p. 44 (2007)

    Google Scholar 

  4. Witt, J., Annighöfer, B., Falkenberg, O., Weltin, U.: Design of a High Performance Quad-Rotor Robot Based on a Layered Real-Time System Architecture. In: Jeschke, S., Liu, H., Schilberg, D. (eds.) ICIRA 2011, Part I. LNCS, vol. 7101, pp. 312–323. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Bouabdallah, S.: Design and Control of Quadrotors with Application to Autonomous Flying. Ecole Polytechnique Federale de Lausanne (2007)

    Google Scholar 

  6. Beard, R.: Quadrotor Dynamics and Control (2008)

    Google Scholar 

  7. Fay, G.: Derivation of the Aerodynamic Forces for the Mesicopter (2001)

    Google Scholar 

  8. Falkenberg, O.: Robuste Lageregelung und GPS/INS-Integration eines autonomen Quadrokopters. Hamburg University of Technology (2010)

    Google Scholar 

  9. Leishman, J.: Principles of Helicopter Aerodynamics. Cambridge Univ. Pr. (2006)

    Google Scholar 

  10. Tayebi, A., McGilvray, S.: Attitude Stabilization of a VTOL Quadrotor Aircraft. IEEE Transactions on Control Systems Technology 14(3), 562–571 (2006)

    Article  Google Scholar 

  11. Sofrony, J., Turner, M., Postlethwaite, I.: Anti-Windup Synthesis Using Riccati Equations. International Journal of Control 80(1), 112–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Weston, P., Postlethwaite, I.: Linear Conditioning for Systems Containing Saturating Actuators. Automatica 36(9), 1347–1354 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pilz, U., Gropengießer, W., Walder, F., Witt, J., Werner, H.: Quadrocopter Localization Using RTK-GPS and Vision-Based Trajectory Tracking. In: Jeschke, S., Liu, H., Schilberg, D. (eds.) ICIRA 2011, Part I. LNCS, vol. 7101, pp. 12–21. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Ljung, L.: System Identification: Theory for the User. Pearson Education (1998)

    Google Scholar 

  15. Witt, J.: Approximate Model Predictive Control for Nonlinear Multivariable Systems. In: Model Predictive Control, pp. 141–166. InTech (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Falkenberg, O., Witt, J., Pilz, U., Weltin, U., Werner, H. (2012). Model Identification and \(\mathcal{H}_{\infty}\) Attitude Control for Quadrotor MAV’s. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33515-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33515-0_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33514-3

  • Online ISBN: 978-3-642-33515-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics