Skip to main content

Modeling of Rate-Dependent Hysteresis for Piezoelectric Actuator with MPI Model-Based Hammerstein System

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7507))

Included in the following conference series:

Abstract

In this paper, a Hammerstein system is proposed to describe the rate-dependent hysteresis nonlinearity of a piezoelectric actuator. In this system, a MPI model represents the nonlinear static block and a second order linear system represents the linear dynamic block. The parameters identification method for the system is given. Comparison between the outputs of the system and experiment shows that the system can describe the rate-dependent hysteresis nonlinearity of the piezoelectric actuator in a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lin, C.J., Yang, S.R.: Precise Positioning of Piezo-Actuated Stages using Hysteresis-Observer Based Control. Mechatronics 16, 417–426 (2006)

    Article  Google Scholar 

  2. Chen, K.: A Novel Piezo-driven Micro-jet Injection System for Transdermal Drug Delivery. In: Proceedings of ASME 2009 4th Frontiers in Biomedical Devices Conference, BioMed 2009, Irvine, California, USA, June 8-9 (2009)

    Google Scholar 

  3. Croft, D., Shed, G., Devasia, S.: Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application. Journal of Dynamic Systems, Measurement and Control 123/35 (March 2001)

    Google Scholar 

  4. Kobayashi, T., Tsaur, J., Maeda, R.: Development of 1D Optical Micro Scanner Driven by Piezoelectric Actuators. In: Proceedings of IPACK 2005 ASME Inter, PACK 2005, San Francisco, California, USA, July 17-22 (2005)

    Google Scholar 

  5. Goldfarb, M., Celanovic, N.: Modeling Piezoelectric Stack Actuators for Control of Micromanipulation. IEEE Control Systems Magazine 17(3), 69–79 (1997)

    Article  Google Scholar 

  6. Simu, U., Johansson, S.: Evaluation of a Monolithic Piezoelectric Drive Unit for a Miniature Robot. Sensors and Actuators A: Physical 101, 175–184 (2002)

    Article  Google Scholar 

  7. Viswamurthy, S.R., Ganguli, R.: Modeling and Compensation of Piezoceramic Actuator Hysteresis for Helicopter Vibration Control. Sensors and Actuators A: Phys. 135(2), 801–810 (2007)

    Article  Google Scholar 

  8. Ge, P., Jouaneh, M.: Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering 20(2), 99–111 (1997)

    Article  Google Scholar 

  9. Xie, W., Fu, J., Yao, H., Su, C.Y.: Observer Based Control of Piezoelectric Actuators with Classical Duhem Modeled Hysteresis. In: 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, June 10-12 (2009)

    Google Scholar 

  10. Goldfarb, M., Celanovic, N.: Modeling Piezoelectric Stack Actuators for Control of Micromanipulation. In: International Conference on Robotics and Automation, Minneapolis, MN (April 1996)

    Google Scholar 

  11. Jouaneh, M., Tian, H.: Accuracy enhancement of a piezoelectric actuator with hysteresis. In: Japan/USA Symposium on Flexible Automation, vol. 1. ASME (1992)

    Google Scholar 

  12. Gomis-Bellmunt, O., Ikhouane, F., Montesinos-Miracle, D.: Control of a piezoelectric actuator considering hysteresis. Journal of Sound and Vibration 326, 383–399 (2009)

    Article  Google Scholar 

  13. Ru, C., Sun, L.: Hysteresis and creep compensation for piezoelectric actuator in open-loop operation. Sensors and Actuators A: Physical 122(1), 124–130 (2005)

    Article  Google Scholar 

  14. Zhang, X., Tan, Y., Su, M.: Modeling of hysteresis in piezoelectric actuators using neural networks. Mechanical Systems and Signal Processing 23, 2699–2711 (2009)

    Article  Google Scholar 

  15. Wang, R., Mao, J.: Research and Application of Dynamic Hysteresis Modeling Based on LS-SVM. In: Proceedings of Chinese Intelligent Automation Conference 2009 (2009)

    Google Scholar 

  16. Yu, Y., Xiao, Z., Naganathan, N.G., Dukkipati, R.V.: Dynamic Preisach modeling of hysteresis for the piezoceramic actuator system. Mech. Mach. Theory 37(1), 75–89 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ben Mrad, R., Hu, H.: A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations. IEEE Trans. Mech. 7(4), 479–489 (2002)

    Article  Google Scholar 

  18. Al Janaideh, M., Rakheja, S., Su, C.-Y.: Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 19, 656–670 (2009)

    Article  Google Scholar 

  19. Dong, R., Tan, Y., Chen, H., Xie, Y.: A neural networks based model for rate-dependent hysteresis for piezoceramic actuators. Sensors and Actuators A 143, 370–376 (2008)

    Article  Google Scholar 

  20. Zhang, X., Tan, Y., Su, M.: Modeling of hysteresis in piezoelectric actuators using neural networks. Mechanical Systems and Signal Processing 23, 2699–2711 (2009)

    Article  Google Scholar 

  21. Zhang, X., Tan, Y., Su, M., Xie, Y.: Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators. Physica B 405, 2687–2693 (2010)

    Article  Google Scholar 

  22. Giri, F., Bai, E.W. (eds.): Block-oriented Nonlinear Systems Identification. Springer (June 2010)

    Google Scholar 

  23. Kuhnen, K.: Modeling, Identification and Compensation of Complex Hysteresis Nonlinearities, a Modified Prandtl-Ishlinskii Approach. European Journal of Control 9(4), 407–418 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Y., Wang, Y., Sun, G., Mao, J. (2012). Modeling of Rate-Dependent Hysteresis for Piezoelectric Actuator with MPI Model-Based Hammerstein System. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33515-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33515-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33514-3

  • Online ISBN: 978-3-642-33515-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics