Learning with Multiple Orientations and Scales for Face Recognition

  • Chuan-Xian Ren
  • Dao-Qing Dai
  • Zhao-Rong Lai
Part of the Communications in Computer and Information Science book series (CCIS, volume 321)


A novel feature fusion algorithm using multiple orientations and scales for illumination-robust face recognition is proposed in this paper. For a given image, it will firstly be transformed by a group of Gabor filters, and the transformed coefficients be weighted by a vector, which can be determined by a given discriminant criteria and constrained quadratic programming method, then the weighted sum of these vectors is defined as the feature representation of the facial image. The new method provides a framework to regularize and calculate the complex similarity between different scales and orientations features, and it effectively avoids dimensionality curse problem emerged in some concatenation based feature fusion methods. Meanwhile, our method presents a reasonable approach for sensing discriminant orientations and scales according to the optimized weights. The framework can be extended into general multi-modal pattern recognition problems. Experiments using benchmark databases show that our new method obtains competitive performance and improves the recognition result.


Face Recognition Illumination Orientation Scale Regularization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, C.C., Dai, D.Q., Yan, H.: Local discriminant wavelet packet coordinates for face recognition. Journal of Machine Learning Research 8, 1165–1195 (2007)zbMATHGoogle Scholar
  2. 2.
    Massot, C., Herault, J.: Model of frequency analysis in the visual cortex and the shape from texture problem. IJCV 76(2), 165–182 (2008)CrossRefGoogle Scholar
  3. 3.
    Lee, T.S.: Image representation using 2D gabor wavelets. IEEE TPAMI 18(10), 959–971 (1996)CrossRefGoogle Scholar
  4. 4.
    Liu, C.J., Wechsler, H.: Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE TIP 11(4), 467–476 (2002)Google Scholar
  5. 5.
    Shen, L.L., Bai, L.: Gabor wavelets and kernel direct discriminant analysis for face recognition. In: ICPR, pp. 284–287 (2004)Google Scholar
  6. 6.
    Liu, C.J.: Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE TPAMI 26(5), 572–581 (2004)CrossRefGoogle Scholar
  7. 7.
    Xie, X., Lam, K.: Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image. IEEE TIP 15(9), 2481–2492 (2006)Google Scholar
  8. 8.
    Lei, Z., Chu, R., He, R., Liao, S., Li, S.: Face recognition by discriminant analysis with gabor tensor representation. Advances in Biometrics, 87–95 (2007)Google Scholar
  9. 9.
    Zhang, B., Shan, S., Chen, X., et al.: Histogram of gabor phase patterns: a novel object representation approach for face recognition. IEEE TIP 16(1), 57–68 (2007)MathSciNetGoogle Scholar
  10. 10.
    Xie, S., Shan, S.G., Chen, X.L., Chen, J.: Fusing local patterns of gabor magnitude and phase for face recognition. IEEE TIP 19(5), 1349–1361 (2010)MathSciNetGoogle Scholar
  11. 11.
    Dai, D.Q., Yan, H.: Wavelets and face recognition. In: Delac, K., Girgic, M. (eds.) Face Recognition, pp. 59–74. I-Tech Education and Publishing (2007)Google Scholar
  12. 12.
    Lin, Y., Liu, T., Fuh, C.: Multiple kernel learning for dimensionality reduction. IEEE TPAMI 33(6), 1147–1160 (2010)CrossRefGoogle Scholar
  13. 13.
    Yan, F., Mikolajczyk, K., Barnard, M., Cai, H., et al.: ℓp norm multiple kernel Fisher discriminant analysis for object and image categorisation. In: IEEE CVPR, pp. 3626–3632 (2010)Google Scholar
  14. 14.
    Wright, J., Yang, A., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE TPAMI 31(2), 210–227 (2009)CrossRefGoogle Scholar
  15. 15.
    Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE TPAMI 32(11), 2106–2112 (2010)CrossRefGoogle Scholar
  16. 16.
    Zhang, T., Tang, Y.Y., Fang, B., et al.: Face recognition under varying illumination using gradientfaces. IEEE TIP 18(11), 2599–2606 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chuan-Xian Ren
    • 1
  • Dao-Qing Dai
    • 1
  • Zhao-Rong Lai
    • 1
  1. 1.Mathematics DepartmentSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations