Collaborative Representation Based Projections for Face Recognition

  • Wankou Yang
  • Changyin Sun
  • Qingshan Liu
  • Karl Ricanek
Part of the Communications in Computer and Information Science book series (CCIS, volume 321)


In this paper, we develop a collaborative representation based projections (CRP) for face recognition, which is an unsupervised method. Like SPP and NPE, CRP aims to preserve the sparse reconstruction relations of data. CRP is much faster than SPP since CRP adopts collaborative representation with regularized least square related as objective function while SPP adopts sparse representation related as objective function. Experimental results on ORL and FERET demonstrate that CRP works well in feature extraction and leads to good recognition performance.


collaborative representation feature extraction face recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  2. 2.
    Raudys, S.J., Jain, A.K.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Ana1ysis and Machine Intel1igence 13(3), 252–264 (1991)CrossRefGoogle Scholar
  3. 3.
    Swets, D.L., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(8), 831–836 (1996)CrossRefGoogle Scholar
  4. 4.
    Belhumeur, V., Hespanha, J., Kriegman, D.: Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)CrossRefGoogle Scholar
  5. 5.
    Yang, J., Yang, J.: Why can LDA be performed in PCA transformed space? Pattern Recognition 36(2), 563–566 (2003)CrossRefGoogle Scholar
  6. 6.
    Hong, Z., Yang, J.: Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition 24(4), 317–324 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Friedman, J.H.: Regularized discriminant analysis. Journal of the American Statistical Association 84, 165–175 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hastie, T., Tibshirani, R.: Penalized discriminant analysis. The Annals of Statistics 23, 73–102 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chen, L.F., Liao, H.Y.M., Ko, M.T., Yu, G.J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognition 33(1), 1713–1726 (2000)CrossRefGoogle Scholar
  10. 10.
    Yu, H., Yang, J.: A direct LDA algorithm for high dimensional data–with application to face recognition. Pattern Recognition 34(10), 2067–2070 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gao, Q., Zhang, L., Zhang, D.: Face recognition using FLDA with single training image per-person. Applied Mathematics and Computation 205(12), 726–734 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Zhuang, X., Dai, D.: Inverse fisher discriminant criteria for small sample size problem and its application to face recognition. Pattern Recognition 38(11), 2192–2194 (2005)CrossRefGoogle Scholar
  13. 13.
    Jin, Z., Yang, J., Hu, Z., Lou, Z.: Face recognition based on the uncorrelated discrimination Transformation. Pattern Recognition 34(7), 1405–1416 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Yang, J., Liu, C.: Color Image Discrimiant Models and Algorithms for Face Recognition. IEEE Trans. Neural Networks 19(2), 2088–2098 (2008)CrossRefGoogle Scholar
  15. 15.
    Loog, M.: Approximate Pairwise Accuracy Criterion for Multiclass Linear Dimension Reduction: Generalization of the Fisher Criterion. IEEE Trans. Pattern Analysis and Machine Intelligence 26(7), 762–766 (2001)CrossRefGoogle Scholar
  16. 16.
    Lotlikar, R., Kothari, R.: Fractional-Step Dimensionality Reduction. IEEE Trans. Pattern Recognition and Machine Intelligence 22(6), 623–627 (2000)CrossRefGoogle Scholar
  17. 17.
    Lu, J., Plataniotic, K.N., Venetsanopouls, A.N.: Face Recognition Using LDA-Based Algorithm. IEEE Trans. Neural Networks 14(1), 195–200 (2003)CrossRefGoogle Scholar
  18. 18.
    Tao, D., Li, X., Wu, X., Maybank, S.J.: Geometric Mean for Subspace Selection. IEEE Trans. Pattern Analysis and Machine Intelligence 31(2), 260–274 (2009)CrossRefGoogle Scholar
  19. 19.
    Xu, Y., Zhang, D., Yang, J., Yang, J.-Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Transactions on Circuits and Systems for Video Technology 21(9), 1255–1262 (2011)CrossRefGoogle Scholar
  20. 20.
    Yang, W., Wang, J., Ren, M., Yang, J.: Feature extraction based on laplacian bidirectional maximum margin criterion. Pattern Recognition 42(11), 2327–2334 (2009)zbMATHCrossRefGoogle Scholar
  21. 21.
    Yang, W., Wang, J., Ren, M., Zhang, L., Yang, J.: Feature extraction using fuzzy inverse FDA. Neurocomputing 72(13-15), 3384–3390 (2009)CrossRefGoogle Scholar
  22. 22.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  23. 23.
    Roweis, S.T., Saul, L.K.: Nonlinear dimension reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  24. 24.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)zbMATHCrossRefGoogle Scholar
  25. 25.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)CrossRefGoogle Scholar
  26. 26.
    Xu, Y., Zhong, A., Yang, J., Zhang, D.: LPP solution schemes for use with face recognition. Pattern Recognition 43(12), 4165–4176 (2010)zbMATHCrossRefGoogle Scholar
  27. 27.
    He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: ICCV, pp. 1208–1213 (2005)Google Scholar
  28. 28.
    Yang, J., Zhang, D., Yang, J., Niu, B.: Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence 29(4), 650–664 (2007)CrossRefGoogle Scholar
  29. 29.
    Yan, S., Xu, D., Zhang, B., Zhang, H.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw patches. In: CVPR (2008)Google Scholar
  31. 31.
    Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories. In: CVPR (2008)Google Scholar
  32. 32.
    Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM MMS 7(1), 214–241 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Wright, J., Yang, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)CrossRefGoogle Scholar
  34. 34.
    Qiao, L.S., Chen, S.C., Tan, X.Y.: Sparsity preserving projections with applications to face recognition. Pattern Recognition 43(1), 331–341 (2010)zbMATHCrossRefGoogle Scholar
  35. 35.
    Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.: Learning with L1-graph for image analysis. IEEE Transactions on Image Processing 19(4), 858–866 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition. In: ICCV (2011)Google Scholar
  37. 37.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Ana1ysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  38. 38.
    Phillips, P.J.: The facial recognition technology (FERET) database (2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wankou Yang
    • 1
  • Changyin Sun
    • 1
  • Qingshan Liu
    • 1
  • Karl Ricanek
    • 2
  1. 1.School of AutomationSoutheast UniversityNanjingChina
  2. 2.Face Aging Group, Dept. of Computer ScienceUNCWUSA

Personalised recommendations