A Modified Selective Attention Model for Salient Region Detection in Real Scenes

  • Shuyan Li
  • Yongjie Li
Part of the Communications in Computer and Information Science book series (CCIS, volume 321)


One of the most important and essential parts of image processing tasks in computer vision is to predict the regions of interest that is the most attractive and also representative salient ones. This task can be realized effortless by the human visual system via the function of selective attention. In this paper, we introduced a set of new visual features, including contract, entropy, and local feature change into the Itti bottom-up model. We used a set of qualitative and quantitative analysis to demonstrate the effectiveness of the proposed approach on a large dataset with different scenes, and the results show that the modified Itti model combined with the new features can improve greatly the efficiency of salient region detection in real scenes.


visual attention bottom-up attention model feature extraction contract entropy intensity change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)Google Scholar
  2. 2.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  3. 3.
    Walther, D., Koch, C.: Saliency Toolbox 2.0. (2006)Google Scholar
  4. 4.
    Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: CVPR, pp. 1–8. IEEE (2007)Google Scholar
  5. 5.
    Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, vol. 18, p. 155 (2006)Google Scholar
  6. 6.
    Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, vol. 19, p. 545 (2007)Google Scholar
  7. 7.
    Rajashekar, U., van der Linde, I., Bovik, A.C., Cormack, L.K.: Foveated analysis of image features at fixations. Vision Research 47(25), 3160–3172 (2007)CrossRefGoogle Scholar
  8. 8.
    Rajashekar, U., van der Linde, I., Bovik, A.C., Cormack, L.K.: GAFFE: A gaze-attentive fixation finding engine. IEEE Transactions on Image Processing 17(4), 564–573 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Parkhurst, D.J., Niebur, E.: Scene content selected by active vision. Spatial Vision 16(2), 125–154 (2003)CrossRefGoogle Scholar
  10. 10.
    Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 970–982 (2000)CrossRefGoogle Scholar
  11. 11.
    Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19(9), 1395–1407 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: ICCV, pp. 2106–2113. IEEE (2009)Google Scholar
  13. 13.
    Kootstra, G., Nederveen, A., De Boer, B.: Paying attention to symmetry. In: Proceedings of the British Machine Vision Conference, pp. 1115–1125 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shuyan Li
    • 1
  • Yongjie Li
    • 1
  1. 1.Key Laboratory for Neuroinformation of Ministry of EducationUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations