Illegal Video Surveillance on Satellite

  • Meiying Wei
  • Chen Li
  • Dayong Luo
Part of the Communications in Computer and Information Science book series (CCIS, volume 321)


Signal surveillance, especially the video surveillance is an important issue in satellite management and security. Lawbreakers usually steal channels of the public resources and publish their objectionable or illegal videos. In order to filter out these videos before been received, we have to recognize them in the transmission step on the satellite. In this paper, we focus on the video signal recognition on satellite and proposed a effective system for video recognition and surveillance.


Visual Surveillance Satellite Video Surveillance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Lowe, D.G.: Distinctive image features from dcale-invariant key-points. International Journal of Computer Vision 2(60), 91–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
  4. 4.
    Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of keypoints. In: ECCV (2004)Google Scholar
  5. 5.
    Joachims, T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (2005)Google Scholar
  7. 7.
    Gilbert, A., Illingworth, J., Bowden, R.: Fast realistic multi-action recognition using mined dense spatio-temporal features. In: 2009 IEEE 12th International Conference on Computer Vision (2009), (29 2009-October 2, 2009)Google Scholar
  8. 8.
    Niebles, J., Wang, H., Fei-fei, L.: Unsupervised learning of human action categories using spatial-temporal words. In: British Machine Vision Conference (2006)Google Scholar
  9. 9.
    Khoshabeh, R., Hollan, J.D.: Spatio-temporal interest points for video analysis. In: Proceedings of the 27th International Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA 2009, pp. 3455–3460. ACM, New York (2009)Google Scholar
  10. 10.
    Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  11. 11.
    Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-gradient solver for svm. Math. Program. 127(1), 3–30 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Meiying Wei
    • 1
  • Chen Li
    • 1
  • Dayong Luo
    • 2
  1. 1.Chinese State Radio Monitor CenterChina
  2. 2.Tianjin Electric Power Information and Telecommunication CompanyChina

Personalised recommendations