Advertisement

Background Subtraction Method Based on Block-Wise Mixture Models

  • Yan Zhang
  • Linkai Luo
Part of the Communications in Computer and Information Science book series (CCIS, volume 321)

Abstract

A novel method for modeling background and detecting moving objects from a fixed video is proposed. There are three key ideas. Firstly, the background model is based on small blocks instead of pixels. Features of each block are extracted by the method of Integral Image. Secondly, the similarity of two blocks is quickly calculated by comparing their features. Thirdly, the framework of mixture models is used for each block. Our method achieves very good performance on several videos in which illumination changes radically.

Keywords

Background subtraction Integral image Mixture models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 246–252 (1999)Google Scholar
  2. 2.
    Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)CrossRefGoogle Scholar
  3. 3.
    Friedman, N., Russell, S.: Image Segmentation in Video Sequences: A ProbabilisticApproach. In: Proc. Conf. Uncertainty in Artificial Intelligence, pp. 175–181 (1997)Google Scholar
  4. 4.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric Model for Background Subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Sheikh, Y., Shah, M.: Bayesian modeling of dynamicscenes for object detection. PAMI 27, 1778–1792 (2005)CrossRefGoogle Scholar
  6. 6.
    Matsuyama, T., Ohya, T., Habe, H.: Background Subtraction for Non-Stationary Scenes. In: Proc. Asian Conf. Computer Vision, pp. 622–667 (2000)Google Scholar
  7. 7.
    Mason, M., Duric, Z.: Using Histograms to Detect and Track Objects in Color Video. In: Proc. Applied Imagery Pattern Recognition Workshop, pp. 154–159 (2001)Google Scholar
  8. 8.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp. 121–130 (1981)Google Scholar
  9. 9.
    Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: CVPR (2004)Google Scholar
  10. 10.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric Model for Background Subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Maintenance. In: Proc. IEEE Int’l Conf. Computer Vision, vol. 1, pp. 256–261 (1999)Google Scholar
  12. 12.
    Monnet, A., Mittal, A., Paragios, N., Visvanathan, R.: Background Modeling and Subtraction of Dynamic Scenes. In: Proc. IEEE Int’l Conf. Computer Vision, vol. 1, pp. 1305–1312 (2003)Google Scholar
  13. 13.
    Kato, J., Watanabe, T., Joga, S., Rittscher, J., Blake, A.: An HMM-based Segmentation method for Traffic Monitoring Movies. IEEE Trans. Pattern Analysis and Machine Intelligence 24(9), 1291–1296 (2002)CrossRefGoogle Scholar
  14. 14.
    Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comp. Vis. 51(2), 91–109 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. In: ICCV (2003)Google Scholar
  16. 16.
    Monnent, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and Subtraction of dynamic scenes. In: CVPR (2003)Google Scholar
  17. 17.
    Chan, A.B., Mahadevan, V.: NunoVasconcelos:Generalized Stauffer–Grimson background subtractionfor dynamic scenes. In: Machine Vision and ApplicationsGoogle Scholar
  18. 18.
    Jones, V.J.: Robust real-time face detection. International Journalof Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  19. 19.
  20. 20.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yan Zhang
    • 1
  • Linkai Luo
    • 1
  1. 1.Department of AutomationXiamen UniversityXiamenP.R. China

Personalised recommendations