Skip to main content

4M-Model Based Bionic Design of Artificial Skeletal Muscle Actuated by SMA

  • Conference paper
  • 3670 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7508))

Abstract

This paper presents a novel 4M-model based artificial skeletal muscle (AM) actuated by shape memory alloy (SMA) wires. Different from Hill- and Huxley- model, the 4M-model is developed based on the microscopic working mechanism of molecular motor (4M), which is the origin of muscle contraction. Overlapped SMA wires and custom made passive composite (CMPC) of the AM were used to mimic biomechanical characteristics of skeletal muscle, which mainly refers to force-length relationship. Experimental results of the AM demonstrate the desired performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yin, Y.H., Guo, Z., Chen, X., Fan, Y.J.: Studies on Biomechanics of Skeletal Muscle Based on the Working Mechanism of Myosin Motors: An Overview. Chin. Sci. Bull. (2012)

    Google Scholar 

  2. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R Soc. Lond. B 126, 136–195 (1938)

    Article  Google Scholar 

  3. Huxley, A.F., Niedergerke, R.: Structural changes in muscle during contraction. Nature 173, 971–973 (1954)

    Article  Google Scholar 

  4. Guo, Z., Yin, Y.H.: Coupling mechanism of multi-force interactions in the myosin molecular motor. Chin. Sci. Bull. 55, 3538–3544 (2010)

    Article  Google Scholar 

  5. Yin, Y.H., Guo, Z.: Collective mechanism of molecular motors and a dynamic mechanical model for sarcomere. Sci. China-Technol. Sci. 54, 2130–2137 (2011)

    Article  MATH  Google Scholar 

  6. Guo, Z., Yin, Y.H.: A dynamic model of skeletal muscle based on collective behavior of myosin motors - Biomechanics of skeletal muscle based on working mechanism of myosin motors (I). Sci. China Tech. Sci. 55, 1589–1595 (2012)

    Article  Google Scholar 

  7. Yin, Y.H., Chen, X.: Bioelectrochemical control mechanism with variable-frequency regulation for skeletal muscle contraction—Biomechanics of skeletal muscle based on the working mechanism of myosin motors (II). Sci. China Tech. Sci. 55, 2115–2125 (2012), doi:10.1007/s11431-012-4777-x

    Article  Google Scholar 

  8. Yin, Y.H., Fan, Y.J., Xu, L.D.: EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. IEEE T. Inf. Technol. Biomed. 16(4), 542–549 (2012)

    Article  Google Scholar 

  9. Yin, Y.H., Hu, H., Xia, Y.C.: Active tracking of unknown surface using force sensing and control technique for robot. Sens. Actuators A: Phys. 112(2-3), 313–319 (2004)

    Article  Google Scholar 

  10. Yin, Y.H., Zhou, C., Chen, S., Hu, H., Lin, Z.: Optimal design of micro-force sensor for wire bonding with high acceleration and frequent movement Sens. Sens. Actuators A: Phys. 127(1), 104–118 (2006)

    Article  Google Scholar 

  11. Yin, S., Yin, Y.H.: Study on virtual force sensing and force display device for the interactive bicycle simulator. Sens. Actuators A: Phys. 140(1), 65–74 (2007)

    Article  Google Scholar 

  12. Fan, Y.J., Guo, Z., Yin, Y.H.: SEMG-based neuro-fuzzy controller for a parallel ankle exoskeleton with proprioception. Int. J. Robot. Autom. 26(4), 1–11 (2011)

    Google Scholar 

  13. Alfayad, S., Ouezdou, F.B., Namoun, F., Gheng, G.: High performance integrated electro-hydraulic actuator for robotics. Part I: Principle, prototype design & first experiments. Sens. Actuators A: Phys. 169(1), 115–123 (2011)

    Article  Google Scholar 

  14. Konishi, S., Kawai, F., Cusin, P.: Thin flexible end-effector using pneumatic balloon actuator. Sens. Actuators A: Phys. 89(1-2), 28–35 (2001)

    Article  Google Scholar 

  15. Cohen, Y.B.: Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE press (2004)

    Google Scholar 

  16. Zhang, J.J., Yin, Y.H.: SMA-based bionic integration design of self-sensor–actuator-structure for artificial skeletal muscle. Sens. Actuators A: Phys. 181, 94–102 (2012)

    Article  Google Scholar 

  17. Lagoudas, D.C.: Shape Memory Alloys: Modeling and Engineering Application. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Zhu, J. (2012). 4M-Model Based Bionic Design of Artificial Skeletal Muscle Actuated by SMA. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33503-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33503-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33502-0

  • Online ISBN: 978-3-642-33503-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics