Skip to main content

Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cell Catalysts and its Mitigation Strategies

  • Chapter
Eco- and Renewable Energy Materials

Abstract

Carbon corrosion in the electrocatalysts of polymer electrolyte membrane fuel cell (PEMFC) has a critical effect on its lifetime and becomes one of the main obstacles to its commercialization. The corrosion of supporting materials can be serious because of the appearance of the high voltage (>0. 9V) when PEMFC operates in start/stop cycles or encounters local hydrogen starvation. One solution is a system strategy using existing materials by a voltage-limitation device to minimize the single cell voltage. The ultimate solution is the development of alternative corrosion-resistant supporting materials for Pt. Carbon nanotube is one of the most promising materials among all carbon forms. Nevertheless, non-carbon materials resistant to corrode under high voltage are still highly desired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Costamagna P, Srinivasan S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. fundamental scientific aspects. Journal of Power Sourcfi, 2001, 102: 242–252.

    Article  Google Scholar 

  2. Wu J F, Yuan X Z, Martin J J, et al. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008, 184: 104–119.

    Article  Google Scholar 

  3. Ishigami Y, Takada K, Yano H, et al. Corrosion of carbon supports at cathode during hydrogen/air replacement at anode studied by visualization of oxygen partial pressures in a PEFC—Start-up/shut-down simulation. Journal of Power Sources, 2011, 196: 3003–3008.

    Article  Google Scholar 

  4. Cheng X, Chen L, Peng C, et al. Catalyst microstructure examination of PEMFC membrane electrode assemblies vs. time. Journal of the Electrochemical Society, 2004, 151: A48–A52.

    Article  Google Scholar 

  5. Cleghorn S J C, Mayfield D K, Moore D A, et al. A polymfi electrolyte fuel cell life test: 3 years of continuous operation. Journal of Power Sources, 2006, 158: 446–454.

    Article  Google Scholar 

  6. Shao Y Y, Yin G P, Wang Z B, et al. Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. Journal of Power Sources, 2007, 167: 235–242.

    Article  Google Scholar 

  7. Yu P T, Gu W B, Makharia R, et al. The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Transactions, 2006, 3: 797–809.

    Article  Google Scholar 

  8. Stevens D A, Hicks M T, Haugen G M, et al. Ex Situ and in Situ stability studies of PEMFC catalysts. Journal of the Electrochemical Society, 2005, 152: A2309–A2315.

    Article  Google Scholar 

  9. Fuller T F, Perry M, Reiser C. Applying the lessons learned from PAFC to PEM Fuel Cells. ECS Transactions, 2006, 1: 337–344.

    Article  Google Scholar 

  10. Reiser C A, Bregoli L, Patterson T W, et al. A reverse-current decay mechanism for fuel cells. Electrochemical and Solid-State Letters, 2005, 8:A273–A276.

    Article  Google Scholar 

  11. Gasteiger H A, Gu W B, Makharia R, et al. Catalyst degradation mechanism in PEM and direct methanol fuel cells. Mini-micro Fuel Cells, 2008, 25–233.

    Google Scholar 

  12. Gasteiger H A, Gu W, Makharia R, et al. Beginning-of-Life MEA performance — efficiency loss contributions//Vielstifi W, Lamm A, Gasteiger HA. Handbook of Fuel Cells. New York: Wiley, 2003, 593–610.

    Google Scholar 

  13. Schneider I A, Dahlen S. Start-stop phenomena in channel and land areas of a polymer electrolyte fuel cell. Electrochemical and Solid-State Letters, 2011, 14: B30–B33.

    Article  Google Scholar 

  14. Baumgartner W R, Wallnofer E, Schaffer T, et al. Electrocatalytic corrosion 68 Eco-and Renewable Energy Materials of carbon support in PEMFC at fuel starvation. ECS Transactions, 2006, 3, 811.

    Article  Google Scholar 

  15. Fuller T F, Gray G, Carbon corrosion induced by partial hydrogen coverage. ECS Transactions, 2006, 1: 345–353.

    Article  Google Scholar 

  16. Maass S, Finsterwalder F, Frank G, et al. Carbon support oxidation in PEM fuel cell cathodes. Journal of Power Sources, 2008, 176: 444–451.

    Article  Google Scholar 

  17. Binder H, Kohling A, Richter K, et al. Über die anodische oxydation von aktivkohlen in wässrigen elektrolyten. Electrochimica Acta, 1964, 9, 255–274.

    Article  Google Scholar 

  18. Liu Z Y, Brady B K, Carter R N, et al. Characterization of carbon corrosioninduced structural damage of PEM fuel cell cathode electrodes caused by local fuel starvation. Journal of the Electrochemical Society, 2008, 155: B979–B984.

    Article  Google Scholar 

  19. Heckman F A, Harling D F. Progressive oxidation of selected particles of carbon black: Further evidence for a new microstructural model. Rubber Chemistry and Technology, 1966, 39: 1–13.

    Article  Google Scholar 

  20. Donnet J B, Bouland J C. Revue Generale du Caoutchouc et des Plastiques, 1964, 41: 407.

    Google Scholar 

  21. Gruver G A. The corrosion of carbon black in phosphoric acid. Journal of the Electrochemical Society, 1978, 125: 1719–1720.

    Article  Google Scholar 

  22. Cherstiouk O V, Simonov A N, Moseva N S, et al. Microstructure effects on the electrochemical corrosion of carbon materials and carbon-supported Pt catalysts. Electrochimica Acta, 2010, 55: 8453–8460.

    Article  Google Scholar 

  23. Wang J J, Yin G P, Shao Y Y, et al. Effect of carbon black support corrosion on the durability of Pt/C catalyst. Journal of Power Sources, 2007, 171: 331–339.

    Article  Google Scholar 

  24. Stevens D A, Dahn J R. Thermal degradation of the support in carbonsupported platinum electrocatalysts for PEM fuel cells. Carbon, 2005, 43: 179–188.

    Article  Google Scholar 

  25. Janssen G J M, Sitters E F, Pfrang A. Proton-exchange-membrane fuel cells durability evaluated by load-on/off cycling. Journal of Power Sources, 2009, 191: 501–509.

    Article  Google Scholar 

  26. Wu J F, Yuan X Z, Martin J J, et al. Proton exchange membrane fuel cell degradation under close to open-circuit conditions: Part I: In situ diagnosis. Journal of Power Sources, 2010, 195: 1171–1176.

    Article  Google Scholar 

  27. Tang H, Qi Z G, Ramani M, et al. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. Journal of Power Sources, 2006, 158: 1306–1312.

    Article  Google Scholar 

  28. Liu Z Y, Zhang J L, Yu P T, et al. Transmission electron microscopy observation of corrosion behaviors of platinized carbon blacks under thermal and electrochemical conditions. Journal of the Electrochemical Society, 2010, 157:B906–B913.

    Article  Google Scholar 

  29. Ferreira-Aparicio P, Folgado M A, Daza L. High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts. Journal of Power Sources, 2009, 192: 57–62.

    Article  Google Scholar 

  30. Oh S H, Oh J G, Haam S, et al. On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2008, 10: 1048–1051.

    Article  Google Scholar 

  31. Hung C C, Lim P Y, Chen J R, et al. Corrosion of carbon support for PEM fuel cells by electrochemical quartz crystal microbalance. Journal of Power Sources, 2011, 196: 140–146.

    Article  Google Scholar 

  32. Cai M, Ruthkosky M S, Merzougui B, et al. Investigation of thermal and electrochemical degradation of fuel cell catalysts. Journal of Power Sources, 2006, 160: 977–986.

    Article  Google Scholar 

  33. Perry M L, Patterson T W, Reiser C. Systems strategies to mitigate carbon corrosion in fuel cells. ECS Transactions, 2006, 3: 783–795.

    Article  Google Scholar 

  34. Takagi Y, Takakuwa Y. Effect of shutoff sequence of hydrogen and air on performance degradation in PEFC. ECS Transactions, 2006, 3: 855–860.

    Article  Google Scholar 

  35. Luo X, Hou Z J, Ming P W, et al. Effect of graphitic carbon on stability of Pt/C catalysts for proton exchange membrane fuel cells. Chinese Journal of Catalysis, 2008, 29: 330–334.

    Google Scholar 

  36. Miyazaki K, Shirakata H, Abe T, et al. Novel graphitised carbonaceous materials for use as a highly corrosion-tolerant catalyst support in polymer electrolyte fuel cells. Fuel Cells, 2010, 10: 960–965.

    Article  Google Scholar 

  37. Ko Y J, Oh H S, Kim H. Effect of heat-treatment temperature on carbon corrosion in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2010, 195: 2623–2627.

    Article  Google Scholar 

  38. Shanahan P V, Xu L B, Liang C D, et al. Graphitic mesoporous carbon as a durable fuel cell catalyst support. Journal of Power Sources, 2008, 185: 423–427.

    Article  Google Scholar 

  39. Wang M X, Xu F, Sun H F, et al. Nanoscale graphite-supported Pt catalysts for oxygen reduction reactions in fuel cells. Electrochimica Acta, 2011, 56: 2566–2573.

    Article  Google Scholar 

  40. Wang X, Lee J S, Zhu Q, et al. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chemistry of Materials, 2010, 22: 2178–2180.

    Article  Google Scholar 

  41. Biniak S, Szymanski G, Sieldlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 1997, 35: 1799–1810.

    Article  Google Scholar 

  42. Fuertes A B, Centeno T A. Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and ironimpregnated polypyrrole as precursor. Journal of Materials Chemistry, 2005, 15: 1079–1083.

    Article  Google Scholar 

  43. Vinu A, Srinivasu P, Mori T, et al. Novel hexagonally ordered nitrogendoped mesoporous carbon from SBA-15/Polyaniline nanocomposite. Chemistry Letter, 2007, 36: 770–772.

    Article  Google Scholar 

  44. Yang C M, Weidenthaler C, Spliethoff B, et al. Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chemistry of Materials. 2005, 17: 355–358.

    Article  Google Scholar 

  45. Acharya C K, Li W, Liu Z F, et al. Effect of boron doping in the carbon support on platinum nanoparticles and carbon corrosion. Journal of Power Sources, 2009, 192: 324–329.

    Article  Google Scholar 

  46. Liu X, Chen J, Liu G, et al. Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts. Journal of Power Sources, 2010, 195: 4098–4103.

    Article  Google Scholar 

  47. Jung S E, Kim HS. Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells. Journal of the American Chemical Society, 2010, 132: 14700–14701.

    Article  Google Scholar 

  48. Wang X, Li W Z, Chen Z W, et al. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources, 2006, 158: 154–159.

    Article  Google Scholar 

  49. Hasche F, Oezaslam M, Strasser P. Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts. Physical Chemistry Chemical Physics, 2010, 12, 15251–15258.

    Article  Google Scholar 

  50. Park S, Shao Y Y, Kou R, et al. Polarization losses under accelerated stress test using multiwalled carbon nanotube supported Pt catalyst in PEM fuel cells. Journal of the Electrochemical Society, 2011, 158: B297–B302.

    Article  Google Scholar 

  51. Li L, Xing Y C. Electrochemical durability of carbon nanotubes at 80 °C. Journal of Power Sources, 2008, 178: 75–79.

    Article  Google Scholar 

  52. Wang J J, Yin G P, Shao Y Y, et al. Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions. Journal of Power Sources, 2008, 176: 128–131.

    Article  Google Scholar 

  53. Gabriel M A, Genovese L, Krosnicki G, et al. Metallofullerenes as fuel cell electrocatalysts: A theoretical investigation of adsorbates on C59Pt. Physical Chemistry Chemical Physics, 2010, 12: 9406–9412.

    Article  Google Scholar 

  54. Guo L, Swope V M, Merzougui B, et al. Oxidation resistance of bare and Pt-Coated electrically conducting diamond powder as assessed by thermogravimetric analysis. Journal of the Electrochemical Society, 2010, 157: A19–A25.

    Article  Google Scholar 

  55. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669.

    Article  Google Scholar 

  56. Yoo E J, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Letters, 2009, 9: 2255–2259.

    Article  Google Scholar 

  57. Guo S J, Dong S J, Wang E K, Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano, 2010, 4: 547–555.

    Article  Google Scholar 

  58. Jafri R I, Arockiados T, Rajalakshmi N, et al. Nanostructured Pt dispersed on graphene-multiwalled carbon nanotube hybrid nanomaterials as electrocatalyst for PEMFC. Journal of the Electrochemical Society, 2010, 157: B874–B879.

    Article  Google Scholar 

  59. Shao Y Y, Kou R, Wang D H, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 2009, 11: 954–957.

    Article  Google Scholar 

  60. Xin Y C, Liu J G, Zhou Y, et al. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. Journal of Power Sources, 2011, 196: 1012–1018.

    Article  Google Scholar 

  61. Hummers W S, Offenman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80: 1339.

    Article  Google Scholar 

  62. Huang S Y, Ganesan P, Popov B N. Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental, 2011, 102: 71–77.

    Article  Google Scholar 

  63. Ye J L, Liu J G, Zou Z G, et al. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method. Journal of Power Sources, 2010, 195: 2633–2637.

    Article  Google Scholar 

  64. Chhina H, Campell S, Kesler O. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. Journal of Power Sources, 2006, 161: 893–900.

    Article  Google Scholar 

  65. Huang S Y, Ganesan P, Popov B N. Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Applied Catalysis B: Environmental, 2010, 96: 224–231.

    Article  Google Scholar 

  66. Antolini E, Gonzalez E R. Ceramic materials as supports for lowtemperature fuel cell catalysts. Solid State Ionics, 2009, 180: 746–763.

    Article  Google Scholar 

  67. Erlebacher J. An atomistic description of dealloying. Journal of the Electrochemical Society, 2005, 151: C614–C626.

    Article  Google Scholar 

  68. Zeis R, Mathur A, Fritz G, et al. Platinum-plated nanoporous gold: An efficient, low Pt loading electrocatalfit for PEM fuel cells. Journal of Power Sources, 2007, 165: 65–72.

    Article  Google Scholar 

  69. Ge X B, Yan X L, Wang R Y, et al. Tailoring the structure and property of Pt-Decorated nanoporous gold by thermal annealing. Journal of Physical Chemistry: C, 2009, 113: 7379–7394.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, J., Hou, Z. (2013). Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cell Catalysts and its Mitigation Strategies. In: Zhou, Y. (eds) Eco- and Renewable Energy Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33497-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33497-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33496-2

  • Online ISBN: 978-3-642-33497-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics