Skip to main content

Automatic Boundary Evolution Tracking via a Combined Level Set Method and Mesh Warping Technique: Application to Hydrocephalus

  • Conference paper
Mesh Processing in Medical Image Analysis 2012 (MeshMed 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7599))

Included in the following conference series:

Abstract

Hydrocephalus is a neurological disease which causes ventricular dilation due to abnormalities in the cerebrospinal fluid (CSF) circulation. Although treatment via a CSF shunt in the brain ventricles has been performed, poor rates of patient responses continue. Thus, to aid surgeons in hydrocephalus treatment planning, we propose a geometric computational approach for tracking hydrocephalus ventricular boundary evolution via the level set method and a mesh warping technique. In our previous work [1], we evolved the ventricular boundary in 2D CT images which required a backtracking line search for obtaining valid intermediate meshes. In this paper, we automatically detect the ventricular boundary evolution for 2D CT images. To help surgeons determine where to implant the shunt, we also compute the brain ventricle volume evolution for 3D MR images using our approach.

The work of the first author was funded by NSF CAREER Award OCI-1054459; the work of the second author was funded in part by NSF CAREER Award OCI-1054459 and NSF grant CNS-0720749.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park, J., Shontz, S., Drapaca, C.: A combined level set/mesh warping algorithm for tracking brain and cerebrospinal fluid evolution in hydrocephalic patients. In: Zhang, J. (ed.) Image-based Geometric Modeling and Mesh Generation. Lecture Notes in Computational Vision and Biomechanics. Springer (to apppear, 2012)

    Google Scholar 

  2. West, J.: Application of the level set method to hydrocephalus: Simulating the motion of the ventricles. Master’s thesis, University of Waterloo (2004)

    Google Scholar 

  3. Shewchuk, J.: Triangle: Engineering a 2D quality mesh generator and delaunay triangular. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  4. Brewer, M., Diachin, L., Knupp, P., Leurent, T., Melander, D.: The Mesquite mesh quality improvement toolkit. In: Proc. of the 12th International Meshing Roundtable, Sandia National Laboratories, pp. 239–250 (2003)

    Google Scholar 

  5. Munson, T.: Mesh shape-quality optimization using the inverse mean-ratio metric. Math. Program 110, 561–590 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: BrainWeb: Online interface to a 3D MRI simulated brain database, NeuroImage, In: Proc. of 3rd International Conference on Functional Mapping of the Human Brain, vol.5(4), Part 2/4, S425, (1997).

    Google Scholar 

  7. Zhu, S., Xia, X., Zhang, Q., Belloulata, K.: An image segmentation algorithm in image processing based on threshold segmentation. In: Proc. of the 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 673–678 (2007)

    Google Scholar 

  8. Fabijanska, A.: Variance filter for edge detection and edge-based image segmentation. In: Proc. of 7th International Conference on Perspective Technologies and Methods in MEMS Design, pp. 151–154 (2011)

    Google Scholar 

  9. Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics (1999)

    Google Scholar 

  10. Narayanan, K., Karunakar, Y.: 3-D reconstruction of tumors in MRIs. International Journal of Research and Reviews in Signal Acquisitionand Processing 1(2) (2011)

    Google Scholar 

  11. Si, H.: TetGen: A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator Version 1.4 (2006)

    Google Scholar 

  12. Roy, S., Heltai, L., Drapaca, C.S., Costanzo, F.: An immersed finite element method approach for brain Biomechanics. To Appear in the Proc. of SEM (2012)

    Google Scholar 

  13. Choi, J.U., Kim, D.S., Kim, S.H.: Endoscopic surgery for obstructive hydrocephalus. Yonsei Med. J. 40(6), 600–607 (1999)

    Google Scholar 

  14. Drapaca, C.S., Tenti, G., Rohlf, K., Sivaloganathan, S.: A quasi-linear viscoelastic constitutive equation for the brain: Application to hydrocephalus. J. Elasticity 85, 65–83 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hakim, S., Venegas, J., Burton, J.: The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: Mechanical interpretation and mathematical model. Surg. Neurol. 5, 187–210 (1976)

    Google Scholar 

  16. Hydrocephalus statistics (2008), http://www.ghrforg.org/faq.htm

  17. Kellie, G.: Appearances observed in the dissection of two individuals; death from cold and congestion of the brain. Trans. Med-Chir. Soc., 1–84 (1824)

    Google Scholar 

  18. Milhorat, T.H.: Pediatric Neurosurgery. Contemporary Neurology Series 16 (1978)

    Google Scholar 

  19. Miller, K., Chinzei, K.: Constitutive modeling of brain tissue - experiment and theory. J. Biomech. 30, 1115–1121 (1997)

    Article  Google Scholar 

  20. Monro, A.: Observations on Structure and Functions of the Nervous System. Creech and Johnson, Edinburgh (1783)

    Google Scholar 

  21. Nagashima, T., Tamaki, N., Matsumoto, S., Horwitz, B., Seguchi, Y.: Biomechanics of hydrocephalus: A new theoretical model. Neurosurg. 21(6), 898–904 (1987)

    Article  Google Scholar 

  22. Sivaloganathan, S., Tenti, G., Drake, J.: Mathematical pressure volume models of the cerebrospinal fluid. Appl. Math. Comput. 94, 243–266 (1998)

    Article  Google Scholar 

  23. Tenti, G., Sivaloganathan, S., Drake, J.: Brain biomechanics: steady-state consolidation theory of hydrocephalus. Can. App. Math. Q. 7(1), 111–124 (1999)

    MATH  MathSciNet  Google Scholar 

  24. Tuli, S., Alshail, E., Drake, J.: Third ventriculostomy versus cerebrospinal fluid shunt as a first procedure in pediatric hydrocephalus. Pediatr. Neurosurg. 30(1), 11–15 (1999)

    Article  Google Scholar 

  25. Tully, B., Ventikos, Y.: Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics. IEEE Trans. Biomed. Eng. 56(6), 1644–1651 (2009)

    Article  Google Scholar 

  26. Wilkie, K., Drapaca, C.S., Sivaloganathan, S.: A theoretical study of the effect of ventricular pressure pulsations on the pathogenesis of hydrocephalus. Submitted to Appl. Math. Comput. (2009)

    Google Scholar 

  27. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  29. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer (2003)

    Google Scholar 

  30. Mitich, A., Ayed, I.: Variational and level set methods in image segmentation. Springer Topics in Signal Processing, vol. 5. Springer (2010)

    Google Scholar 

  31. Persson, P.: Mesh size functions for implicit geometries and PDE-based gradient limiting. Engineering with Computers 22, 95–109 (2006)

    Article  Google Scholar 

  32. Strang, G., Persson, P.: Circuit simulation and moving mesh generation. In: Proc. of Int. Symp. on Comm. and Inform. Tech., ISCIT 2004 (2004)

    Google Scholar 

  33. Bah, M., Nair, P., Browne, M.: Mesh morphing for finite element analysis of implant positioning in cementless total hip replacement. Med. Eng. Phys. 31, 1235–1243 (2009)

    Article  Google Scholar 

  34. Baldwin, M., Langenderfer, J., Rullkoetter, P., Laz, P.: Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput. Meth. Prog. Bio. 97, 232–240 (2010)

    Article  Google Scholar 

  35. Liu, Y., D’Arceuil, H., He, J., Duggan, M., Gonzalez, G., Pryor, J., de Crespigny, A.: A nonlinear mesh-warping technique for correcting brain deformation after stroke. Magn. Reson. Imaging 24, 1069–1075 (2006)

    Article  Google Scholar 

  36. Sigal, I., Yang, H., Roberts, M., Downs, J.: Morphing methods to parameterize specimen-specific finite element model geometries. J. Biomech. 43, 254–262 (2010)

    Article  Google Scholar 

  37. Chan, T., Vese, L.: Active contours without edges. IEEE T. Image. Process. 10 (2001)

    Google Scholar 

  38. Baker, T.: Mesh movement and metamorphosis. In: Proc. of the Tenth International Meshing Roundtable, Sandia National Laboratories, pp. 387–396 (2001)

    Google Scholar 

  39. Shontz, S., Vavasis, S.: Analysis of and workarounds for element reversal for a finite elementbased algorithm for warping triangular and tetrahedral meshes. BIT, Numerical Mathematics 50, 863–884 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wu, Y.: Matlab implementation of the Chan Vese active contour without edges method (2011), http://www.mathworks.com/matlabcentral/fileexchange/23445

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, J., Shontz, S.M., Drapaca, C.S. (2012). Automatic Boundary Evolution Tracking via a Combined Level Set Method and Mesh Warping Technique: Application to Hydrocephalus. In: Levine, J.A., Paulsen, R.R., Zhang, Y. (eds) Mesh Processing in Medical Image Analysis 2012. MeshMed 2012. Lecture Notes in Computer Science, vol 7599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33463-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33463-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33462-7

  • Online ISBN: 978-3-642-33463-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics