Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Advance in electrical machines is characterized, among other, by pursuit of ever higher rotational speeds, particularly regarding turbomachinery and machining spindles [1]. Demands for increasing tangential speeds and, often, positioning accuracy could not be achieved by using standard journal or ball bearings. Therefore, the requirement for speed of the machinery brought about improvements in bearing technology. Enhancements have been either sought within the standard (mechanical) bearing technology that would become suitable for required high speeds or alternatives have been looked for in the form of contactless bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Gieras, High speed machines, in Advancements in Electric Machines (Power Systems), ed. by J.F. Gieras (Springer, Berlin 2008)

    Google Scholar 

  2. A. Binder, T. Schneider, High-speed inverter-fed ac drives, in Electrical Machines and Power Electronics, 2007. ACEMP ’07. International Aegean Conference on, pp. 9–16, 10–12 Sept 2007

    Google Scholar 

  3. L. Wang, R.W. Snidle, L. Gu, Rolling contact silicon nitride bearing technology: a review of recent research. Wear 246(1–2), 159–173 (2000)

    Article  Google Scholar 

  4. E. Owen, Flexible shaft versus rigid shaft electric machines for petroleum and chemical plants, in Petroleum and Chemical Industry Conference, 1989, Record of Conference Papers. Industrial Applications Society, 36th Annual, pp. 157–165, 11–13 Sept 1989

    Google Scholar 

  5. J. Donaldson, High speed fans, in High Speed Bearings for Electrical Machines (Digest No: 1997/164), IEE Colloquium on, pp. 2/1–210, 25 Apr 1997

    Google Scholar 

  6. A. Dowers, The pursuit of higher rotational speeds; developments in bearing design and materials, in High Speed Bearings for Electrical Machines (Digest No: 1997/164), IEE Colloquium on, pp. 5/1–5/5, 25 Sept 1997

    Google Scholar 

  7. A. Muszynska, Whirl and whip-rotor/bearing stability problems. J. Sound Vib. 110(3), 443–462 (1986)

    Article  Google Scholar 

  8. S.H. Crandall, A heuristic explanation of journal bearing instability, in Proceedings of the Workshop on Rotordynamic Instability Problems in High-Performance Turbomachinery, Texas A&M University, College Station, Texas, pp. 274–283, 1982

    Google Scholar 

  9. Dyson Digital Motors, Dyson Ltd. (2009), http://www.dyson.com/technology/ddmtabbed.asp

  10. C. Zwyssig, J.W. Kolar, S.D. Round, Megaspeed drive systems: pushing beyond 1 million r/min. IEEE/ASME Trans. Mechatron. 14(5), 598–605 (2009)

    Google Scholar 

  11. C. Zwyssig, J. Kolar, W. Thaler, M. Vohrer, Design of a 100 W, 500000 rpm permanent-magnet generator for mesoscale gas turbines, in Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005, vol. 1, pp. 253–260, 2–6 Oct 2005

    Google Scholar 

  12. J. Peirs, D. Reynaerts, F. Verplaetsen, Development of an axial microturbine for a portable gas turbine generator. J. Micromech. Microeng. 13(4), S190 (2003)

    Article  Google Scholar 

  13. Radical Design Improvements with Hybrid Bearings in Electric Drives for Core Drill and Stone Saw Systems, SKF (2001), http://www.skf.com/files/001278.pdf

  14. M. Weck, A. Koch, Spindle bearing systems for high-speed applications in machine tools. CIRP Ann. Manuf. Technol. 42(1), 445–448 (1993)

    Article  Google Scholar 

  15. L. Zheng, T. Wu, D. Acharya, K. Sundaram, J. Vaidya, L. Zhao, L. Zhou, K. Murty, C. Ham, N. Arakere, J. Kapat, L. Chow, Design of a super-high speed permanent magnet synchronous motor for cryogenic applications, in Electric Machines and Drives, 2005 IEEE International Conference on, pp. 874–881, 15 May 2005

    Google Scholar 

  16. L. Burgmeier, M. Poursaba, Ceramic hybrid bearings in air-cycle machines. J. Eng. Gas Turbines Power 118(1), 184–190 (1996)

    Article  Google Scholar 

  17. H. Aramaki, Y. Shoda, Y. Morishita, T. Sawamoto, The performance of ball bearings with silicon nitride ceramic balls in high speed spindles for machine tools. J. Tribol. 110(4), 693–698 (1988)

    Article  Google Scholar 

  18. X. Luo, K. Cheng, D. Webb, F. Wardle, Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. J. Mater. Process. Technol. 167(2–3), 515–528 (2005)

    Article  Google Scholar 

  19. D. Huo, K. Cheng, F. Wardle, Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: holistic design approach, design considerations and specifications. Int. J. Adv. Manuf. Technol. 47(9–12), 867–877 (2009)

    Google Scholar 

  20. L.G. Frechette, S.A. Jacobson, K.S. Breuer, F.F. Ehrich, R. Ghodssi, R. Khanna, C.W. Wong, X. Zhang, M.A. Schmidt, A.H. Epstein, High-speed microfabricated silicon turbomachinery and fluid film bearings. J. Microelectromech. Syst. 14(1), 141–152 (2005)

    Google Scholar 

  21. Air Bearing Application and Design Guide, New Way Precision (2003), http://www.newwayprecision.com

  22. G. Genta, Dynamics of Rotating Systems (Springer, Berlin, 2005)

    Google Scholar 

  23. B.H. Rho, K.W. Kim, A study of the dynamic characteristics of synchronously controlled hydrodynamic journal bearings. Tribol. Int. 35(5), 339–345 (2002)

    Article  Google Scholar 

  24. A. Muszynska, Stability of whirl and whip in rotor/bearing systems. J. Sound Vib. 127(1), 49–64 (1988)

    Article  MathSciNet  Google Scholar 

  25. B. Majumdar, Externally pressurized gas bearings: a review. Wear 62(2), 299–314 (1980)

    Article  Google Scholar 

  26. I. Pickup, D. Tipping, D. Hesmondhalgh, B. Al Zahawi, A 250,000 rpm drilling spindle using a permanent magnet motor, in Proceedings of International Conference on Electrical Machines—ICEM’96, pp. 337–342, 1996

    Google Scholar 

  27. T. Osamu, T. Akiyoshi, O.N.O. Kyosuke, Experimental study of whirl instability for externally pressurized air journal bearings. Bull. Jpn. Soc. Mech. Eng. 11(43), 172–179 (1968)

    Article  Google Scholar 

  28. C.-H. Chen, T.-H. Tsai, D.-W. Yang, Y. Kang, J.-H. Chen, The comparison in stability of rotor-aerostatic bearing system compensated by orifices and inherences. Tribol. Int. 43(8), 1360–1373 (2010)

    Article  Google Scholar 

  29. K. Czolczynski, K. Marynowski, Stability of symmetrical rotor supported in flexibly mounted, self-acting gas journal bearings. Wear 194(1–2), 190–197 (1996)

    Article  Google Scholar 

  30. K. Stout, F. Sweeney, Design of aerostatic flat pad bearings using pocketed orifice restrictors. Tribol. Int. 17(4), 191–198 (1984)

    Article  Google Scholar 

  31. R. Bassani, E. Ciulli, P. Forte, Pneumatic stability of the integral aerostatic bearing: comparison with other types of bearing. Tribol. Int. 22(6), 363–374 (1989)

    Article  Google Scholar 

  32. A. Mohamed, F. Emad, Nonlinear oscillations in magnetic bearing systems. IEEE Trans. Autom. Control 38(8), 1242–1245 (1993)

    Google Scholar 

  33. G. Schweitzer, Active magnetic bearings—chances and limitations, in 6th International Conference on Rotor Dynamics, pp. 1–14, 2002

    Google Scholar 

  34. M. Kimman, H. Langen, J. van Eijk, H. Polinder, Design of a novel miniature spindle concept with active magnetic bearings using the gyroscopic stiffening effect, in Proceedings of the 10th International Symposium on Magnetic Bearing, Martigny, Switzerland, 2006

    Google Scholar 

  35. R. Larsonneur, P. Bnhler, P. Richard, Active magnetic bearings and motor drive towards integration, in Proceedings 8th International Symposium Magnetic Bearing, Mito, Japan, pp. 187–192, 2002

    Google Scholar 

  36. M. Kimman, H. Langen, R.M. Schmidt, A miniature milling spindle with active magnetic bearings. Mechatronics 20(2), 224–235 (2010)

    Article  Google Scholar 

  37. M. Ahrens, L. Kucera, R. Larsonneur, Performance of a magnetically suspended flywheel energy storagedevice. IEEE Trans. Control Syst. Technol. 4(5), 494–502 (1996)

    Article  Google Scholar 

  38. H. Fujiwara, K. Ebina, N. Takahashi, O. Matsushita, Control of flexible rotors supported by active magnetic bearings, in Proceedings of the 8th International Symposium on Magnetic Bearings, Mito, Japan, 2002

    Google Scholar 

  39. G. Schweitzer, E. Maslen (eds.), Magnetic Bearings: Theory, Design and Application to Rotating Machinery (Springer, Berlin, 2009)

    Google Scholar 

  40. H. Balini, H. Koroglu, C. Scherer, Lpv control for synchronous disturbance attenuation in active magnetic bearings, in ASME 2008 Dynamic Systems and Control Conference, vol. 2008, no. 43352, pp. 1091–1098, 2008

    Google Scholar 

  41. W. Canders, N. Ueffing, U. Schrader-Hausman, R. Larsonneur, MTG400: a magnetically levitated 400 kW turbo generator system for natural gas expansion, in Proceedings of the 4th International Symposium on Magnetic Bearings, pp. 435–440, 1994

    Google Scholar 

  42. J. Schmied, Experience with magnetic bearings supporting a pipeline compressor, in Proceedings of the 2nd International Symposium on Magnetic Bearings, pp. 47–56, 1990

    Google Scholar 

  43. Y. Suyuan, Y. Guojun, S. Lei, X. Yang, Application and research of the active magnetic bearing in the nuclear power plant of high temperature reactor, in Proceedings of the 10th International Symposium on Magnetic Bearings, 2006

    Google Scholar 

  44. C.R. Knospe, Active magnetic bearings for machining applications. Control Eng. Pract. 15(3), 307–313 (2007)

    Article  Google Scholar 

  45. J.-K. Park, S.-K. Ro, B.-S. Kim, J.-H. Kyung, W.-C. Shin, J.-S. Choi, A precision meso scale machine tools with air bearings for microfactory, in 5th International Workshop on Microfactories, Besancon, France, 2006

    Google Scholar 

  46. R. Hebner, J. Beno, A. Walls, Flywheel batteries come around again. IEEE Spectr. 39(4), 46–51 (2002)

    Google Scholar 

  47. R. Blom, M. Kimman, H. Langen, P. van den Hof, R.M. Schmidt, Effect of miniaturization of magnetic bearing spindles for micro-milling on actuation and sensing bandwidths, in Proceedings of the Euspen International Conference, EUSPEN 2008, Zurich, Switzerland, 2008

    Google Scholar 

  48. T. Wang, F. Wang, H. Bai, H. Cui, Stiffness and critical speed calculation of magnetic bearing-rotor system based on fea, in Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, pp. 575–578, 17–20 Sept 2008

    Google Scholar 

  49. R. Humphris, P. Allaire, D. Lewis, L. Barrett, Diagnostic and control features with magnetic bearings, in Energy Conversion Engineering Conference, IECEC-89, Proceedings of the 24th Intersociety, vol. 3, pp. 1491–1498, 6–11 Aug 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Borisavljevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borisavljevic, A. (2013). Bearings for High-Speed Machines. In: Limits, Modeling and Design of High-Speed Permanent Magnet Machines. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33457-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33457-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33456-6

  • Online ISBN: 978-3-642-33457-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics