Skip to main content

Frictional Force—Introduction

  • Chapter
  • 1924 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 171))

Abstract

First chapter begins with an introduction to BFMC, and covers the basic definitions and nature of friction material composite applied to automotive braking system. Rudimentary aspects of friction material composite definitions based on polymeric, metallic, and multiple matrix with some of the issues at the interphases have been discussed. AFM, FIM and MD (molecular dynamics) observations and study of size of the asperity in situ and transition from microscopic, “single atom” friction to “macroscopic” friction are discussed.

Weight, velocity independence on friction coefficiency with a basic understanding of the frictional force, molecular forces are explained. An account of what exactly happens in a frictional contact surface with thermal heat affected transfer film layer has been explained in this chapter. Relationship between the aperiodic atomic structure of quasicrystals and their lowering friction, for both elastic and inelastic regimes are brought to limelight with basic character, their effect on crystallographic planes of contact. Quasicrystals and its significance for the future research applied to brake friction material composite finds a useful place in this chapter. Essential virtues of BFMC with theoretical considerations of static, kinetic coefficiency is discussed in detail. Further hot and cold compressibility, low and high speed judder, noise related issues, key role on static to dynamic coefficiency are explained. Basic information on science of noise applied to braking contact and its possible elimination sequence with matrix alteration would be a useful input in the introductory chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

NONAME

  1. M. de Boissieu et al., Nat. Mater. 6, 977 (2007)

    Article  Google Scholar 

  2. T.J. Sato et al., Magnetic excitations in the Zn–Mg–RE icosahedral quasicrystals. J. Phys. Soc. Jpn. 70(Suppl. A), 224 (2001)

    Google Scholar 

  3. M. de Boissieu et al., Phys. Rev. Lett. 75, 89 (1995)

    Article  Google Scholar 

  4. C. Janot, Quasicrystals: a Primer (Oxford University Press, New York, 1992) (an introduction to quasicrystals)

    Google Scholar 

  5. T. Janssen, G. Chapuis, M. de Boissieu, Aperiodic Crystals. From Modulated Phases to Quasicrystals (Oxford University Press, Oxford, 2007) (an introduction to quasicrystals)

    Google Scholar 

  6. C.D. Yuen, G.J. Miller, P.A. Thiel, Preferential surface oxidation of Gd in Gd5Ge4. Appl. Surf. Sci. 258(7), 2757 (2012). doi:10.1016/j.apsusc.2011.10.127

    Article  Google Scholar 

  7. P.A. Thiel, B. Ünal, C.J. Jenks, A.I. Goldman, P.C. Canfield, T.A. Lograsso, J.W. Evans, M. Quiquandon, D. Gratias, M.A. Van Hove, A distinctive feature of the surface structure of quasicrystals: intrinsic and extrinsic heterogeneity. Isr. J. Chem. 51(11–12), 1326 (2011). doi:10.1002/ijch.201100148. Quasicrystals, special issue of Israel Journal of Chemistry dedicated to Prof. Daniel Shectman, Nobel Laureate in Chemistry 2011

    Article  Google Scholar 

  8. P.A. Thiel, Guest editorial: quasicrystals. Isr. J. Chem. 51(11–12), 1141 (2011). doi:10.1002/ijch.201100127. Quasicrystals, special issue of Israel Journal of Chemistry dedicated to Prof. Daniel Shectman, Nobel Laureate in Chemistry 2011

    Article  Google Scholar 

  9. T. Duguet, B. Ünal, J. Ledieu, J.-M. Dubois, V. Fournée, P.A. Thiel, Nanodomains due to phason defects at a quasicrystal surface. Phys. Rev. Lett. 106(7), 076101 (2011). doi:10.1103/PhysRevLett.106.076101

    Article  Google Scholar 

  10. J.W. Evans, Y. Han, B. Ünal, M. Li, K.J. Caspersen, D. Jing, A.R. Layson, C.R. Stoldt, T. Duguet, P.A. Thiel, From initial to late stages of epitaxial thin film growth: STM analysis and atomistic or coarse-grained modeling, in Selected Topics on Crystal Growth, Proceedings of the 14th International Summer School on Crystal Growth held in Dalian, China, August 2010, ed. by M. Wang, K. Tsukamoto, D. Wu. AIP Conf. Proc., vol. 1270, (2010), pp. 26–44. doi:10.1063/1.3476231

    Google Scholar 

  11. Y. Han, B. Ünal, D. Jing, P.A. Thiel, J.W. Evans, Nanoscale ‘quantum’ islands on metal substrates: microscopy studies and electronic structure analyses. Materials 3, 3965 (2010). doi:10.3390/ma3073965. Special issue on the topic of SPM (Scanning Probe Microscopy) in Materials Science

    Article  Google Scholar 

  12. Y. Sato, B. Ünal, T.A. Lograsso, P.A. Thiel, A.K. Schmid, T. Duden, N.C. Bartlet, K.F. McCarty, Periodic step arrays on the aperiodic i–Al–Pd–Mn quasicrystal surface at high temperature. Phys. Rev. B 81(11), 161406 (2010). doi:10.1103/Physrevb.81.161406

    Article  Google Scholar 

  13. P.A. Thiel, B. Ünal, Surface structure and properties of quasicrystals, in Encyclopedia of Surface and Colloid Science, ed. by P. Somasundaran, A. Hubbard, 2nd edn. (Taylor & Francis, New York, 2010). ISBN 9780849396151. doi:10.1081/E-ESCS-120044917

    Google Scholar 

  14. P.A. Thiel, Fundamentals of surface science: are complex metallic alloys—especially quasicrystals—different from simple alloys or elemental metals?, in Surface Properties and Engineering of Complex Intermetallics, vol. 3, ed. by E. Belin-Ferré (World Scientific, Singapore, 2010), pp. 149–182. ISBN 978-981-4304-76-4. http://www.worldscibooks.com/physics/7733.html

    Chapter  Google Scholar 

  15. B. Ünal, Y. Sato, K.F. McCarty, N.C. Bartelt, T. Duden, C.J. Jenks, A.K. Schmid, P.A. Thiel, Work function of a quasicrystal surface: icosahedral Al–Pd–Mn. J. Vac. Sci. Technol. A 27, 1249 (2009). doi:10.1116/1.3168561

    Article  Google Scholar 

  16. P.A. Thiel, Quasicrystal surfaces. Annu. Rev. Phys. Chem. 59, 129 (2008). doi:10.1146/annurev.physchem.59.032607.093736

    Article  Google Scholar 

  17. J.Y. Park, D.F. Ogletree, M. Salmeron, C.J. Jenks, P.A. Thiel, J. Brenner, J.M. Dubois, Friction anisotropy: a unique and intrinsic property of decagonal quasicrystals. J. Mater. Res. 23, 1488 (2008). doi:10.1557/JMR.2008.0187

    Article  Google Scholar 

  18. M. Shen, S.M. Russell, D.J. Lin, P.A. Thiel, Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur. J. Chem. Phys. 135(15), 154701 (2011)

    Article  Google Scholar 

  19. Y. Han, D. Jing, B. Ünal, P.A. Thiel, J.W. Evans, Far-from-equilibrium film growth on alloy surfaces: Ni and Al on NiAl(110). Phys. Rev. B 84(11), 113414 (2011)

    Article  Google Scholar 

  20. A. Belianinov, B. Ünal, K.M. Ho, C.Z. Wang, J.W. Evans, T.C. Trinqides, P.A. Thiel, Nucleation and growth of Ag islands on the \((\sqrt{3}\times \sqrt{3})R30^{\circ}\) phase of Ag on Si(111). J. Phys. Condens. Matter 23(26), 265002 (2011)

    Article  Google Scholar 

  21. C.D. Yuen, B. Ünal, D. Jing, P.A. Thiel, Weak bonding of Zn in an Al-based approximant, based on surface measurements. Philos. Mag. 91(19–21), 2879–2888 (2011). Special issue: Proceedings of the Eleventh International Conference on Quasicrystals: 13–18 June 2010, Sapporo

    Article  Google Scholar 

  22. G.D. Liles, Analysis of disc brake squeal using finite element methods. SAE Paper 891150 (1989)

    Google Scholar 

  23. H.K. Pelton, Solving disk brake squeal on oil drilling rigs. Sound Vib., 14–18 (October 1989)

    Google Scholar 

  24. S.W.E. Earles, G.B. Soar, Squeal noise in a disc brakes, in Proc. Instn. Mech. Engrs., Vibration and Noise in Motor Vehicles (1971)

    Google Scholar 

  25. N. Millner, An analysis of disc brake squeal. SAE Paper 780332 (1978)

    Google Scholar 

  26. H. Murakami, N. Tsunada, T. Kitamura, A study concerned with a mechanism of disc brake squeal. SAE Paper 841233 (1984)

    Google Scholar 

  27. S.W.E. Eales, P.W. Chambers, Predicting some effects of damping on the occurrence of disc brake squeal noise. ASME Winter Meeting, 11/85

    Google Scholar 

  28. M. Nishiwaki, K. Okamura, Study on brake noise. Trans. Jpn. Soc. Mech. Eng. 54(497), 166 (1988)

    Article  Google Scholar 

  29. K. Ohta, K. Kagawa, T. Eto, S. Nishikawa, Study on disk brake noise. Trans. Jpn. Soc. Mech. Eng. 50(457), 1585 (1984)

    Article  Google Scholar 

  30. P.C. Brooks, D.C. Crolla, A.M. Lang, Sensitivity of disc brake squeal. AVEC No. 923005, 1992

    Google Scholar 

  31. A.M. Lang, T.P. Newcomb, P.C. Brooks, Brake squeal—the influence of rotor geometry. ImechE C444/016/93 (1993)

    Google Scholar 

  32. N. Morita, K. Ohta, Study of disc brake squeal. Heavy Industries Engineering Report 20(2), 181 (1983)

    Google Scholar 

  33. T. Suzuki, M. Matui, Simulation of brake squeal by using complex eigenvalue analysis. Trans. JSME 63(630), E, 579 (1993)

    Google Scholar 

  34. G.D. Liles, Analysis of disc brake squeal using finite element methods. SAE Paper 891150 (1989)

    Google Scholar 

  35. H. Baba, M. Okade, T. Takeuchi, Analysis of vibration characteristics of disc brake mounting regarding low—frequency brake squeal. JSAE No. 9533956 (1995)

    Google Scholar 

  36. I. Kido, T. Kurahachi, M. Asai, Analysis of low-frequency brake squeal. SAE Paper 960993 (1996)

    Google Scholar 

  37. P. Dufrenoy, D. Weicheret, A thermomechanical model for the analysis of disc brakes fracture. J. Thermal Stresses 26(8), 815–828 (2001)

    Google Scholar 

  38. X. Fan, H. Lippmann, Elastic-plastic buckling of plates under residual stress, in Advances in Engineering Plasticity and Its Applications (Pergamon, Amsterdam, 1996)

    Google Scholar 

  39. S.W.E. Earles, A mechanism of disc-brake squeal. SAE Paper 770181 (1977)

    Google Scholar 

  40. G. Hsu, Stochastic modeling and identification of lubricated polymer friction dynamics. Ph.D. Thesis, The University of Michigan, Ann Arbor (1995)

    Google Scholar 

  41. J. Hulten, Brake squeal—a self-exciting mechanism with constant friction. SAE Paper 9329655 (1993)

    Google Scholar 

  42. J. Jacobsen, On damping of railway brake squeal. Noise Control Eng. J. (1986)

    Google Scholar 

  43. J.A. Jefferis, Friction and deformation of rolling and sliding surfaces. Ph.D. Dissertation, Cambridge University (1966)

    Google Scholar 

  44. S.M. Haw, N.J. Mosey, J. Phys. Chem. C 116(3), 2132 (2012)

    Article  Google Scholar 

  45. C.P. Bobko, B. Gathier, J.A. Ortega, F.-J. Ulm, L. Borges, Y.N. Abousleiman, Int. J. Numer. Anal. Methods Geomech. 35(17), 1854–1876 (2011)

    Article  Google Scholar 

  46. F. Hausen, N.N. Gosvami, R. Bennewitz, Electrochim. Acta 56(28), 10694–10700 (2011)

    Article  Google Scholar 

  47. V. Narayanunni, B.A. Kheireddin, M. Akbulut, Tribol. Int. 44(12), 1720–1725 (2011)

    Article  Google Scholar 

  48. C. Byrne, Center for Advanced Friction Studies Quarterly Report. Southern Illinois University, vol. 2, no. 4 (October 2000)

    Google Scholar 

  49. C. Byrne, Center for Advanced Friction Studies Quarterly Report. Southern Illinois University, Vol. 4, No. 3 (April 2000)

    Google Scholar 

  50. A.E. Anderson, R.A. Knapp, Hot spotting in automotive friction systems. Wear 135, 319–337 (1990)

    Article  Google Scholar 

  51. P. Dufrenoy, G. Bodoville, G. Degallaix, Damage mechanisms and thermomechanical loading in brake disks, in Temperature-Fatigue Interaction, ed. by L. Remy, J. Petit. ESIS Publ., vol. 29 (2001), pp. 167–176

    Chapter  Google Scholar 

  52. T. Kao, j.W. Richmond, A. Douarre, Brake disc hot spotting and thermal judder: an experimental and finite element study. Int. J. Veh. Des. 23, 276–296 (2001)

    Google Scholar 

  53. K. Lee, J.R. Barber, Frictionally excited thermoelastic instability in automotive disc brakes. J. Tribol. 115, 607–614 (1993)

    Article  Google Scholar 

  54. N. Benseddiq, D. Weichert, J. Seidermann, M. Minet, Optimization of design of railways disc brakes pads. Proc. Inst. Mech. Eng. F 210, 51–61 (1996)

    Article  Google Scholar 

  55. B. Bhushan, Nanotribology and Nanomechanics: An Introduction (Springer, Berlin, 2008), 1516 pp.

    Google Scholar 

  56. J. Nicholson, Facts about Friction (Gedoran Publ., Winchester, 1995), 260 pp.

    Google Scholar 

  57. M. Eriksson, F. Bergman, S. Jacobson, Surface characterization of brake pads after running under silent and squealing conditions. Wear 232, 163–167 (1999)

    Article  Google Scholar 

  58. M. Eriksson, S. Jacobson, Tribological surfaces of organic brake pads. Tribol. Int. 33, 817–827 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sundarkrishnaa, K.L. (2012). Frictional Force—Introduction. In: Friction Material Composites. Springer Series in Materials Science, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33451-1_1

Download citation

Publish with us

Policies and ethics