Skip to main content

\( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \)-Driven Mechanical Work: Bacterial Motility

  • Chapter
  • First Online:
  • 1729 Accesses

Abstract

The use of proton-motive force for performance of mechanical work by the bacterial flagellar motor is described. Detailed data on structural properties of this motor are presented and possible mechanisms of \( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \)-energy transformation during rotational movement of flagellum are discussed. A short description of other examples of \( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \)-dependent motility of prokaryotes and eukaryotic organelles is also provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Minor ATPase activity of flagella has been discovered recently, but is was shown to be necessary for the assembly of these organelles, and not for the movement per se.

  2. 2.

    Rotation of certain subunits of H+-ATP synthase (see preceding chapter) is used as a mechanism of carrying out chemical (rather than mechanical) work.

  3. 3.

    In the case of certain bacteria, several different flagellin isoforms comprise the filament. The physiological function of these isoforms is not yet clear.

  4. 4.

    Hereafter, the presented nomenclature of flagellum proteins is the one used for the bacterium S. typhimurium.

References

  • Bardy SL, Ng SY, Jarrell KF (2003) Prokaryotic motility structures. Microbiology 149:295–304

    Article  Google Scholar 

  • Berg HC (2000) Constraints on models for the flagellar rotary motor. Philos Trans R Soc Lond B Biol Sci 355:491–501

    Article  Google Scholar 

  • Berg HC, Manson MD, Conley MP (1982) Dynamics and energetics of flagellar rotation in bacteria. Symp Soc Exp Biol 35:1–31

    Google Scholar 

  • Bredt W (1973) Motility of mycoplasmas. Ann NY Acad Sci 225:246–250

    Article  ADS  Google Scholar 

  • Cleveland LR, Grimstone AV (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proc R Soc Lond B 159:668–686

    Article  ADS  Google Scholar 

  • Eisenbach M, Adler J (1981) Bacterial cell envelopes with functional flagella. J Biol Chem 256:8807–8814

    Google Scholar 

  • Glagolev AN, Skulachev VP (1978) The proton pump is a molecular engine of motile bacteria. Nature 272:280–282

    Article  ADS  Google Scholar 

  • Glagoleva TN, Glagolev AN, Gusev MV, Nikitina KA (1980) Proton motive force supports gliding in cyanobacteria. FEBS Lett 117:49–53

    Article  Google Scholar 

  • Halfen LN, Castenholz RW (1970) Gliding in a blue-green algae: a possible mechanism. Nature 225:1163–1165

    Article  ADS  Google Scholar 

  • Halfen LN, Castenholz RW (1971) Gliding motility of blue-green algae: Oscillatoria princeps. J Phycol 7:133–145

    Google Scholar 

  • Imada K, Minamino T, Tahara A, Namba K (2007) Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc Natl Acad Sci U S A 104:485–490

    Article  ADS  Google Scholar 

  • Khan S, Berg HC (1983) Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of Streptococcus. Cell 32:913–919

    Article  Google Scholar 

  • Larsen SH, Adler J, Gargus JJ, Hogg RW (1974a) Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci U S A 71:1239–1243

    Article  ADS  Google Scholar 

  • Larsen SH, Reader RW, Kort EN, Tso WW, Adler J (1974b) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:74–77

    Article  ADS  Google Scholar 

  • Manson MD, Tedesco P, Berg HC, Harold FM, Van der Drift C (1977) A protonmotive force drives bacterial flagella. Proc Natl Acad Sci U S A 74:3060–3064

    Article  ADS  Google Scholar 

  • Manson MD, Tedesco PM, Berg HC (1980) Energetics of flagellar rotation in bacteria. J Mol Biol 138:541–561

    Article  Google Scholar 

  • Matsura S, Shioi J, Imae Y (1977) Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS Lett 82:187–190

    Article  Google Scholar 

  • Metlina AL (2001) Procariotic flagella as system of biological motility. Usp Biol Chem 41:229–282 (in Russian)

    Google Scholar 

  • Mitchell P (1956) Hypothetical thermokinetic and electrokinetic mechanisms of locomotion in microorganisms. Proc R Phys Soc Edinb 25:32–34

    Google Scholar 

  • Skulachev VP (1977) Transmembrane electrochemical H+-potential as a convertible energy source for the living cell. FEBS Lett 74:1–9

    Article  Google Scholar 

  • Skulachev VP (1980) Membrane electricity as a convertible energy currency for the cell. Can J Biochem 58:161–175

    Article  Google Scholar 

  • Skulachev VP (1988) Membrane bioenergetics. Springer, Berlin

    Book  Google Scholar 

  • Stolp H (1968) Bdellovibrio bacteriovorus—a predatory bacterial parasite. Naturwissenschaften 55:57–63 (in German)

    Article  ADS  Google Scholar 

  • Tamm SL (1982) Flagellated ectosymbiotic bacteria propel a eucaryotic cell. J Cell Biol 94:697–709

    Article  Google Scholar 

  • Waterbury JB, Willey JM, Franks DG, Valois FW, Watson SW (1985) A cyanobacterium capable of swimming motility. Science 230:74–76

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Skulachev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skulachev, V.P., Bogachev, A.V., Kasparinsky, F.O. (2013). \( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \)-Driven Mechanical Work: Bacterial Motility . In: Principles of Bioenergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33430-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33430-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33429-0

  • Online ISBN: 978-3-642-33430-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics