Skip to main content

\( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \)-Driven Chemical Work

  • Chapter
  • First Online:
  • 1722 Accesses

Abstract

The use of proton-motive force for performing chemical work is described. The structure and biochemical properties of F o F 1-type ATP synthase as well as the mechanism of energy transduction by this enzyme are thoroughly discussed. Characteristic properties of V o V 1-type and E 1 E 2-type ATPases are briefly described. Some other types of \( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \)-motive chemical reactions, such as pyrophosphate synthesis, NADPH formation, and reverse transport of reducing equivalents in the respiratory chain are also reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Besides ATP synthases of F o F 1-type, ATP synthases (ATPases) of V o V 1- and E 1 E 2-types may be also found in living organisms. The last sections of this chapter deal with these enzymes.

  2. 2.

    The number of c-type subunits of F o factor will be discussed in more detail later.

  3. 3.

    It should be stressed that in reality all the nucleotide-binding sites are located in the area of α and β subunit contacts. But in order to simplify the description, we will attribute these sites to those subunits which possess more amino acid residues participating in the formation of the corresponding sites.

  4. 4.

    This is true for the bacterial type enzyme; in the case of the mitochondrial enzyme, the central stalk is composed of subunits γ, δ, and ε.

  5. 5.

    These data are in accordance with the experimentally measured H+/ATP stoichiometry for chloroplast H+-ATP synthase. In the case of plants, ADP is photophosphorylated on the external side of the thylakoid membrane. The ATP obtained is mainly utilized in the chloroplast stroma during the synthesis of glucose. No porters participate in this process, and the H+/ATP ratio was shown to be about four protons per ATP molecule.

  6. 6.

    Catalytic sites are located in subunits A.

  7. 7.

    Two peripheral stalks are found in the vacuolar V 0 V 1-type ATPase.

  8. 8.

    Besides the membrane-bound transhydrogenase, the cells may also have a soluble transhydrogenase that catalyzes hydride ion transfer from NADPH to NAD+ in an energy-independent fashion. We will not discuss this enzyme in this book.

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  ADS  Google Scholar 

  • Baltscheffsky H, Von Stedingk LV, Heldt HW, Klingenberg M (1966) Inorganic pyrophosphate: formation in bacterial photophosphorylation. Science 153:1120–1122

    Article  ADS  Google Scholar 

  • Baltscheffsky M (1969) Energy conversion-linked changes of carotenoid absorbance in Rhodospirillum rubrum chromatophores. Arch Biochem Biophys 130:646–652

    Article  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-PPases: a tightly membrane-bound family. FEBS Lett 457:527–533

    Article  Google Scholar 

  • Baykov AA, Dubnova EB, Bakuleva NP, Evtushenko OA, Zhen RG, Rea PA (1993) Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Lett 327:199–202

    Article  Google Scholar 

  • Belitser VA, Tsibakova ET (1939) The mechanism of phosphorylation associated with respiration. Biokimiia 4:516–526 (in Russian)

    Google Scholar 

  • Bizouarn T, Fjellström O, Meuller J, Axelsson M, Bergkvist A, Johansson C, Göran Karlsson B, Rydström J (2000) Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties. Biochim Biophys Acta 1457:211–228

    Google Scholar 

  • Boekema EJ, Berden JA, van Heel MG (1986) Structure of mitochondrial F1-ATPase studied by electron microscopy and image processing. Biochim Biophys Acta 851:353–360

    Article  Google Scholar 

  • Boyer PD (2002) Catalytic site occupancy during ATP synthase catalysis. FEBS Lett 512:29–32

    Article  ADS  Google Scholar 

  • Boyer PD, Cross RL, Momsen W (1973) A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci U S A 70:2837–2839

    Article  ADS  Google Scholar 

  • Bragg PD (1984) The ATPase complex of Escherichia coli. Can J Biochem Cell Biol 62:1190–1197

    Article  Google Scholar 

  • Chow DC, Forte JG (1995) Functional significance of the beta-subunit for heterodimeric P-type ATPases. J Exp Biol 198:1–17

    Google Scholar 

  • Colowick SP, Kaplan NO, Neufeld EF, Ciotti MM (1952) Pyridine nucleotide transhydrogenase. I. Indirect evidence for the reaction and purification of the enzyme. J Biol Chem 195:95–105

    Google Scholar 

  • Danielson L, Ernster L (1963) Energy-dependent reduction of triphosphopyridine nucleotide by reduced diphosphopyridine nucleotide, coupled to the energy-transfer sytem of the respiratory chain. Biochem Z 338:188–205

    Google Scholar 

  • Dontsov AE, Grinius LL, Jasaitis AA, Severina II, Skulachev VP (1972) A study on the mechanism of energy coupling in the redox chain. I. Transhydrogenase: the fourth site of the redox chain energy coupling. J Bioenerg 3:277–303

    Article  Google Scholar 

  • Feldman RI, Sigman DS (1982) The synthesis of enzyme-bound ATP by soluble chloroplast coupling factor 1. J Biol Chem 257:1676–1683

    Google Scholar 

  • Frangione B, Rosenwasser E, Penefsky HS, Pullman ME (1981) Amino acid sequence of the protein inhibitor of mitochondrial adenosine triphosphatase. Proc Natl Acad Sci U S A 78:7403–7407

    Article  ADS  Google Scholar 

  • Friedl P, Hoppe J, Gunsalus RP, Michelsen O, von Meyenburg K, Schairer HU (1983) Membrane integration and function of the three Fo subunits of the ATP synthase of Escherichia coli K12. EMBO J 2:99–103

    Google Scholar 

  • Ganser AL, Forte JG (1973) K+-stimulated ATPase in purified microsomes of bullfrog oxyntic cells. Biochim Biophys Acta 307:169–180

    Article  Google Scholar 

  • Grubmeyer C, Penefsky HS (1981) Cooperatively between catalytic sites in the mechanism of action of beef heart mitochondrial adenosine triphosphatase. J Biol Chem 256:3728–3734

    Google Scholar 

  • Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1–11

    Article  Google Scholar 

  • Hoppe J, Schairer HU, Friedl P, Sebald W (1982) An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel. FEBS Lett 145:21–29

    Article  Google Scholar 

  • Isaev PI, Liberman EA, Samuilov VD, Skulachev VP, Tsofina LM (1970) Conversion of biomembrane-produced energy into electric form. 3. Chromatophores of Rhodospirillum rubrum. Biochim Biophys Acta 216:22–29

    Article  Google Scholar 

  • Jackson JB (2003) Proton translocation by transhydrogenase. FEBS Lett 545:18–24

    Article  Google Scholar 

  • Junge W (1987) Complete tracking of transient proton flow through active chloroplast ATP synthase. Proc Natl Acad Sci U S A 84:7084–7088

    Article  ADS  Google Scholar 

  • Junge W, Pänke O, Cherepanov DA, Gumbiowski K, Müller M, Engelbrecht S (2001) Inter-subunit rotation and elastic power transmission in F o F 1-ATPase. FEBS Lett 504:152–160

    Article  Google Scholar 

  • Lolkema JS, Chaban Y, Boekema EJ (2003) Subunit composition, structure, and distribution of bacterial V-type ATPases. J Bioenerg Biomembr 35:323–335

    Article  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  Google Scholar 

  • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308:659–662

    Article  ADS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41:445–502

    Article  Google Scholar 

  • Murata T, Yamato I, Kakinuma Y, Leslie AG, Walker JE (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308:654–659

    Article  ADS  Google Scholar 

  • Negrin RS, Foster DL, Fillingame RH (1980) Energy-transducing H+-ATPase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector. J Biol Chem 255:5643–5648

    Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  ADS  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  Google Scholar 

  • Racker E (1965) Mechanisms in bioenergetics. Academic Press, London, p 259

    Google Scholar 

  • Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268

    Article  ADS  Google Scholar 

  • Richter ML, Hein R, Huchzermeyer B (2000) Important subunit interactions in the chloroplast ATP synthase. Biochim Biophys Acta 1458:326–342

    Article  Google Scholar 

  • Sazanov LA, Jackson JB (1994) Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett 344:109–116

    Article  Google Scholar 

  • Schöcke L, Schink B (1998) Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur J Biochem 256:589–594

    Article  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Proton-powered turbine of a plant motor. Nature 405:418–419

    Article  ADS  Google Scholar 

  • Shin JM, Besancon M, Bamberg K, Sachs G (1997) Structural aspects of the gastric H, K ATPase. Ann N Y Acad Sci 834:65–76

    Article  ADS  Google Scholar 

  • Skulachev VP (1988) Membrane bioenergetics. Springer, Berlin

    Book  Google Scholar 

  • Skulachev VP, Kozlov IA (1982) H+-ATPase: a substrate translocation concept. Curr Top Membr Transp 16:285–301

    Article  Google Scholar 

  • Stock D, Gibbons C, Arechaga I, Leslie AG, Walker JE (2000) The rotary mechanism of ATP synthase. Curr Opin Struct Biol 10:672–679

    Article  Google Scholar 

  • Vasilyeva EA, Fitin AF, Minkov IB, Vinogradov AD (1980) Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Biochem J 188:807–815

    Google Scholar 

  • Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Phys Rev 84:1263–1314

    Article  Google Scholar 

  • Walker JE, Fearnley IM, Gay NJ, Gibson BW, Northrop FD, Powell SJ, Runswick MJ, Saraste M, Tybulewicz VL (1985) Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. J Mol Biol 184:677–701

    Article  Google Scholar 

  • Walker JE, Runswick MJ, Saraste M (1982) Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1Fo ATPases. FEBS Lett 146:393–396

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Skulachev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skulachev, V.P., Bogachev, A.V., Kasparinsky, F.O. (2013). \( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \)-Driven Chemical Work. In: Principles of Bioenergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33430-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33430-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33429-0

  • Online ISBN: 978-3-642-33430-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics