Skip to main content

Bacteriorhodopsin

  • Chapter
  • First Online:
Principles of Bioenergetics

Abstract

The chapter describes transformation of light energy by retinal-containing proteins. Special attention is given to the mechanism of functioning of bacteriorhodopsin. Bacteriorhodopsin structure, photocycle, and light-dependent transmembrane proton transport are discussed. A short description of other retinal-containing proteins, including halorhodopsin and various sensory rhodopsins, is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Two intermediates in the bacteriorhodopsin photocycle before K 590 were discovered using spectroscopy with sub-picosecond resolution—a “truly initial” intermediate I 480, and J 625 which is formed from I 480 within 700 fs (7·10−13 s).

  2. 2.

    Chlorophyll-containing photosystems also possess better light-absorbing properties, especially when one takes into account light-harvesting complexes (antennae) which seemed to be absent in case of bacteriorhodopsin (However, it was recently found that a bacteriorhodopsin homolog from the bacterium Salinibacter ruber contains a carotenoid molecule, which functions as a primitive light-harvesting antenna (Balashov and Lanyi 2007)).

References

  • Balashov SP, Lanyi JK (2007) Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci 64:2323–2328

    Article  Google Scholar 

  • Baryshev VA, Glagolev AN, Skulachev VP (1981) Sensing of \( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \) in phototaxis of Halobacterium halobium. Nature 292:338–340

    Article  ADS  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  ADS  Google Scholar 

  • Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789

    Article  ADS  Google Scholar 

  • Belyakova TN, Kadzyaukas YuP, Skulachev VP, Smirnova IA, Chekulaeva LN, Jasaitis AA (1975) Generation of electrochemical potential of H+ ions and photophosphorylation in the cells of Halobacterium halobium. Dokl Akad Nauk SSSR 223:483–486

    Google Scholar 

  • Bibikov SI, Grishanin RN, Kaulen AD, Marwan W, Oesterhelt D, Skulachev VP (1993) Bacteriorhodopsin is involved in halobacterial photoreception. Proc Natl Acad Sci U S A 90:9446–9450

    Article  ADS  Google Scholar 

  • Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79:6250–6254

    Article  ADS  Google Scholar 

  • Drachev LA, Jasaitis AA, Kaulen AD, Kondrashin AA, Liberman EA, Nemecek IB, Ostroumov SA, Semenov AYu, Skulachev VP (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin. Nature 249:321–324

    Article  ADS  Google Scholar 

  • Drachev LA, Kaulen AD, Skulachev VP (1984) Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin. FEBS Lett 178:331–335

    Article  Google Scholar 

  • Drachev LA, Kaulen AD, Skulachev VP, Zorina VV (1986) Protonation of a novel intermediate P is involved in the M-bR step of the bacteriorhodopsin photocycle. FEBS Lett 209:316–320

    Article  Google Scholar 

  • Gerber GE, Anderegg RJ, Herlihy WC, Gray CP, Biemann K, Khorana HG (1979) Partial primary structure of bacteriorhodopsin: sequencing methods for membrane proteins. Proc Natl Acad Sci U S A 76:227–231

    Article  ADS  Google Scholar 

  • Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259:393–421

    Article  Google Scholar 

  • Harbison GS, Smith SO, Pardoen JA, Winkel C, Lugtenburg J, Herzfeld J, Mathies R, Griffin RG (1984) Dark-adapted bacteriorhodopsin contains 13-cis, 15-syn and all-trans, 15-anti retinal Schiff bases. Proc Natl Acad Sci U S A 81:1706–1709

    Article  ADS  Google Scholar 

  • Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  ADS  Google Scholar 

  • Kalaidzidis IV, Kaulen AD, Radionov AN, Khitrina LV (2001) Photoelectrochemical cycle of bacteriorhodopsin. Biochemistry (Mosc) 66:1220–1233

    Article  Google Scholar 

  • Kolbe M, Besir H, Essen LO, Oesterhelt D (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288:1390–1396

    Article  ADS  Google Scholar 

  • Lanyi JK (2001) X-ray crystallography of bacteriorhodopsin and its photointermediates: insights into the mechanism of proton transport. Biochemistry (Mosc) 66:1192–1196

    Article  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    Article  Google Scholar 

  • Lozier RH, Bogomolni RA, Stoeckenius W (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium. Biophyl J 15:955–962

    Article  Google Scholar 

  • Lozier RH, Niederberger W, Bogomolni RA, Hwang S, Stoeckenius W (1976) Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Biochim Biophys Acta 440:545–556

    Article  Google Scholar 

  • Mukohata Y, Kaji Y (1981) Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N, N’-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Arch Biochem Biophys 206:72–76

    Article  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Google Scholar 

  • Ovchinnikov YuA (1982) Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett 148:179–191

    Article  Google Scholar 

  • Ovchinnikov YA, Abdulaey NG, Feigina MY, Lobanov NA, Kiselev AV, Nasimov IA (1978) Primary structure of bacteriorhodopsin. Bioorg Chemistry 4:1573–1574 (In Russian)

    Google Scholar 

  • Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM (1997) X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681

    Article  Google Scholar 

  • Sasaki J, Spudich JL (2008) Signal transfer in haloarchaeal sensory rhodopsin-transducer complexes. Photochem Photobiol 84:863–868

    Article  Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313

    Google Scholar 

  • Schobert B, Cupp-Vickery J, Hornak V, Smith S, Lanyi J (2002) Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. J Mol Biol 321:715–726

    Article  Google Scholar 

  • Skulachev VP (1988) Membrane bioenergetics. Springer, Berlin

    Book  Google Scholar 

  • Takahashi T, Tomioka H, Kamo N, Kobatake Y (1985) A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium halobium. FEMS Microbiol Lett 28:161–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Skulachev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skulachev, V.P., Bogachev, A.V., Kasparinsky, F.O. (2013). Bacteriorhodopsin. In: Principles of Bioenergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33430-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33430-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33429-0

  • Online ISBN: 978-3-642-33430-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics