Skip to main content

On Optimal Bounds of Small Inverse Problems and Approximate GCD Problems with Higher Degree

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7483))

Abstract

We show a relation between optimal bounds of a small inverse problem and an approximate GCD problem. First, we present a lattice based method to solve small inverse problems with higher degree. The problem is a natural extension of small secret exponent attack on RSA cryptosystem introduced by Boneh and Durfee. They reduced this attack to solving a bivariate modular equation: \(x(A+y) \equiv 1 \pmod{e}\), where A is a given integer and e is a public exponent. They proved that the problem can be solved in polynomial time when d ≤ N 0.292. In this paper, we extend the Boneh–Durfee’s result to more general problem. For a monic polynomial h(y) of degree κ( ≥ 1), integers C and e, we want to find all small roots of a bivariate modular equation: \(xh(y)+C \equiv 0 \pmod{e}\). We denote by X and Y the upper bound of roots. We present an algorithm for solving the problem and prove that the problem can be solved in polynomial time if \(\gamma \leq 1-\sqrt{\kappa \alpha}\) and |C| is small enough, where X = e γ and Y = e α. We employ a similar approach as unravelled linearization technique introduced by Herrmann and May in especially evaluating the lattice volume. Interestingly, our algorithm does not rule out the case of C = 0, which implies that our algorithm can solve a univariate unknown modular equation \(h(y) \equiv 0 \pmod{p}\), where p is unknown. Our algorithm achieves the best bound in the literature. Then, we show that our obtained bound is natural under the similar sense of Howgrave-Graham’s discussion in CaLC2001 and we prove that our bound, including Boneh–Durfee’s bound, is optimal under the reasonable assumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than n 0.292. IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Coppersmith, D.: Finding a Small Root of a Bivariate Integer Equation; Factoring with High Bits Known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)

    Google Scholar 

  3. Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)

    Google Scholar 

  4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryption over the Integers with Shorter Public Keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

    Google Scholar 

  6. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Herrmann, M., May, A.: Attacking Power Generators Using Unravelled Linearization: When Do We Output Too Much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 487–504. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Herrmann, M., May, A.: Maximizing Small Root Bounds by Linearization and Applications to Small Secret Exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer, Heidelberg (1997)

    Google Scholar 

  10. Howgrave-Graham, N.: Approximate Integer Common Divisors. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Kunihiro, N.: Solving Generalized Small Inverse Problems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 248–263. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Kunihiro, N.: Solving generalized small inverse problems. IEICE Transactions E94-A(6), 1274–1284 (2011)

    Article  Google Scholar 

  13. Kunihiro, N., Shinohara, N., Izu, T.: A Unified Framework for Small Secret Exponent Attack on RSA. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 260–277. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis, University of Paderborn (2003)

    Google Scholar 

  16. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36(3), 553–558 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kunihiro, N. (2012). On Optimal Bounds of Small Inverse Problems and Approximate GCD Problems with Higher Degree. In: Gollmann, D., Freiling, F.C. (eds) Information Security. ISC 2012. Lecture Notes in Computer Science, vol 7483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33383-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33383-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33382-8

  • Online ISBN: 978-3-642-33383-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics