Advertisement

Efficient Two-Move Blind Signatures in the Common Reference String Model

  • E. Ghadafi
  • N. P. Smart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7483)

Abstract

Blind signatures provide a mechanism for achieving privacy and anonymity whereby a user gets the signer to sign a message of his choice without the signer learning the message, or being able to link a signature to the protocol run via which it was obtained. In this paper, we construct a blind signature scheme that requires minimal interaction (two moves) between the user and the signer, and which yields standard signatures. The signature request protocol is akin to the classic, blind-unblind methodology used for RSA blind signatures in the random oracle model; whilst the output signature is a standard Camenisch-Lysyanskaya signature in bilinear groups. The scheme is secure in the common reference string model, assuming a discrete logarithm related assumption in bilinear groups; namely a new variant of the LRSW assumption. We provide evidence for the hardness of our new variant of the LRSW assumption by showing it is intractable in the generic group model.

Keywords

Signature Scheme Random Oracle Discrete Logarithm Blind Signature Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M.: A Secure Three-Move Blind Signature Scheme for Polynomially Many Signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16, 185–215 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21, 149–177 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryptology 17, 297–319 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Camenisch, J., Koprowski, M., Warinschi, B.: Efficient Blind Signatures Without Random Oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology – CRYPTO 1982, pp. 199–203 (1982)Google Scholar
  12. 12.
    Chen, L., Morrissey, P., Smart, N.P.: DAA: Fixing the pairing based protocols. Cryptology ePrint Archive, Report 2009/198 (2009), http://eprint.iacr.org/
  13. 13.
    Fischlin, M.: Round-Optimal Composable Blind Signatures in the Common Reference String Model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320 (2009), http://eprint.iacr.org/
  15. 15.
    Galbraith, S., Paterson, K., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156, 3113–3121 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round Optimal Blind Signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011)Google Scholar
  17. 17.
    Ghadafi, E., Smart, N.P.: Efficient two-move blind signatures in the common reference string model. Cryptology ePrint Archive, Report 2010/568 (2010), http://eprint.iacr.org/
  18. 18.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. Cryptology ePrint Archive, Report 2007/155 (2007), http://eprint.iacr.org/
  19. 19.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Kiayias, A., Zhou, H.-S.: Concurrent Blind Signatures Without Random Oracles. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym Systems (Extended Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Maurer, U.: Abstract Models of Computation in Cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on Transformations from Composite-Order to Prime-Order Groups: The Case of Round-Optimal Blind Signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  28. 28.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13, 361–396 (2000)zbMATHCrossRefGoogle Scholar
  29. 29.
    Seo, J.H., Cheon, J.H.: Beyond the Limitation of Prime-Order Bilinear Groups, and Round Optimal Blind Signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 133–150. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • E. Ghadafi
    • 1
  • N. P. Smart
    • 1
  1. 1.Dept. Computer ScienceUniversity of BristolBristolUnited Kingdom

Personalised recommendations