Skip to main content

Models of Rotating Massive Stars: Impacts of Various Prescriptions

  • Chapter
Book cover Studying Stellar Rotation and Convection

Abstract

The rotation of stars has many interesting and important consequences for the photometric and chemical evolution of galaxies. Many of the predictions of models of stellar rotation are now compared with observations of surface abundances and velocities, with interferometric studies of fast rotating stars, with internal rotation profiles as they can be deduced by asteroseismology, to cite just a few observational constraints. In this paper, we investigate how the outputs of models depend on the prescriptions used for the diffusion coefficients included in the shellular rotating models. After recalling the various prescriptions found in the literature, we discuss their impacts on the evolutionary tracks and lifetimes of the Main-Sequence (MS) phase, the changes of the surface composition and velocities during the MS phase, the distribution of the core helium lifetime in the blue and red parts of the HR diagram, the extensions of the blue loops, the evolution of the angular momentum of the core, and the synthesis of primary nitrogen in fast-rotating metal-poor massive stars. While some of these outputs depend only slightly on the prescriptions used (for instance, the evolution of the surface velocities), most of them show a significant dependence. The models which best fit the changes of the surface abundances are those computed with the vertical shear diffusion coefficient of Maeder (Astron. Astrophys. 321:134–144, 1997) and the horizontal shear diffusion coefficient by Zahn (Astron. Astrophys. 265:115–132, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Numerical simulations by [32] have studied MHD instabilities arising in the radiation zone of a differentially rotating star, in which a poloidal field of fossil origin is sheared into a toroidal field. Their simulations show no sign of dynamo action.

References

  1. Arnett, W.D., Meakin, C.: Turbulent cells in stars: fluctuations in kinetic energy and luminosity. Astrophys. J. 741, 33 (2011)

    Article  ADS  Google Scholar 

  2. Chaboyer, B., Zahn, J.P.: Effect of horizontal turbulent diffusion on transport by meridional circulation. Astron. Astrophys. 253, 173–177 (1992)

    ADS  MATH  Google Scholar 

  3. Chiappini, C., Hirschi, R., Meynet, G., Ekström, S., Maeder, A., Matteucci, F.: A strong case for fast stellar rotation at very low metallicities. Astron. Astrophys. 449, L27–L30 (2006)

    Article  ADS  Google Scholar 

  4. Chiappini, C., Ekström, S., Meynet, G., Hirschi, R., Maeder, A., Charbonnel, C.: A new imprint of fast rotators: low 12C/13C ratios in extremely metal-poor halo stars. Astron. Astrophys. 479, L9–L12 (2008)

    Article  ADS  Google Scholar 

  5. Dohm-Palmer, R.C., Skillman, E.D.: The ratio of blue to red supergiants in Sextans A from Hubble Space Telescope imaging. Astron. J. 123, 1433–1437 (2002)

    Article  ADS  Google Scholar 

  6. Eggenberger, P., Meynet, G., Maeder, A.: The blue to red supergiant ratio in young clusters at various metallicities. Astron. Astrophys. 386, 576–582 (2002)

    Article  ADS  Google Scholar 

  7. Ekström, S., Georgy, C., Eggenberger, P., Meynet, G., Mowlavi, N., Wyttenbach, A., Granada, A., Decressin, T., Hirschi, R., Frischknecht, U., Charbonnel, C., Maeder, A.: Grids of stellar models with rotation. I. Models from 0.8 to 120M at solar metallicity (Z=0.014). Astron. Astrophys. 537, A146 (2012)

    Article  ADS  Google Scholar 

  8. Georgy, C., Ekström, S., Meynet, G., Massey, P., Levesque, E.M., Hirschi, R., Eggenberger, P., Maeder, A.: Grids of stellar models with rotation. II. WR populations and supernovae/GRB progenitors at Z=0.014. Astron. Astrophys. 542, A29 (2012)

    Article  ADS  Google Scholar 

  9. Hartwick, F.D.A.: Radial variation in the ratio of blue to red supergiants in the galaxy. Astrophys. J. Lett. 7, 151 (1970)

    Google Scholar 

  10. Heger, A., Woosley, S.E., Langer, N., Spruit, H.C.: Presupernova evolution of rotating massive stars and the rotation rate of pulsars (invited review). In: Maeder, A., Eenens, P. (eds.) Stellar Rotation. IAU Symposium, vol. 215, p. 591 (2004)

    Google Scholar 

  11. Heger, A., Woosley, S.E., Spruit, H.C.: Presupernova evolution of differentially rotating massive stars including magnetic fields. Astrophys. J. 626, 350–363 (2005)

    Article  ADS  Google Scholar 

  12. Langer, N., Maeder, A.: The problem of the blue-to-red supergiant ratio in galaxies. Astron. Astrophys. 295, 685 (1995)

    ADS  Google Scholar 

  13. Maeder, A.: Stellar evolution with rotation II. A new approach for shear mixing. Astron. Astrophys. 321, 134–144 (1997)

    ADS  Google Scholar 

  14. Maeder, A.: Stellar rotation: evidence for a large horizontal turbulence and its effects on evolution. Astron. Astrophys. 399, 263–269 (2003)

    Article  ADS  Google Scholar 

  15. Maeder, A.: Physics, Formation and Evolution of Rotating Stars. Springer, Berlin (2009)

    Google Scholar 

  16. Maeder, A., Meynet, G.: Stellar evolution with rotation. VII. Low metallicity models and the blue to red supergiant ratio in the SMC. Astron. Astrophys. 373, 555–571 (2001)

    Article  ADS  Google Scholar 

  17. Maeder, A., Meynet, G.: Rotating massive stars: from first stars to gamma ray bursts. Rev. Mod. Phys. 84, 25–63 (2012)

    Article  ADS  Google Scholar 

  18. Maeder, A., Zahn, J.P.: Stellar evolution with rotation. III. Meridional circulation with μ-gradients and non-stationarity. Astron. Astrophys. 334, 1000–1006 (1998)

    ADS  Google Scholar 

  19. Marshall, F.E., Gotthelf, E.V., Zhang, W., Middleditch, J., Wang, Q.D.: Discovery of an ultrafast X-ray pulsar in the supernova remnant N157B. Astrophys. J. Lett. 499, L179 (1998)

    Article  ADS  Google Scholar 

  20. Mathis, S., et al.: On shear-induced turbulence in rotating stars. Astron. Astrophys. 425, 243–247 (2004)

    Article  ADS  Google Scholar 

  21. Meylan, G., Maeder, A.: Comparisons of the HR diagrams of the youngest clusters in the Galaxy, the LMC and SMC—evidence for a large MS widening. Astron. Astrophys. 108, 148–156 (1982)

    ADS  Google Scholar 

  22. Meynet, G., Maeder, A.: Stellar evolution with rotation. VIII. Models at Z=10−5 and CNO yields for early galactic evolution. Astron. Astrophys. 390, 561–583 (2002)

    Article  ADS  Google Scholar 

  23. Meynet, G., Ekström, S., Maeder, A.: The early star generations: the dominant effect of rotation on the CNO yields. Astron. Astrophys. 447, 623–639 (2006)

    Article  ADS  Google Scholar 

  24. Meynet, G., Eggenberger, P., Maeder, A.: Massive star models with magnetic braking. Astron. Astrophys. 525, L11 (2011)

    Article  ADS  Google Scholar 

  25. Meynet, G., Georgy, C., Hirschi, R., Maeder, A., Massey, P., Przybilla, N., Nieva, M.F.: Red supergiants, luminous blue variables and Wolf–Rayet stars: the single massive star perspective. Bull. Soc. R. Sci. Liège 80, 266–278 (2011)

    ADS  Google Scholar 

  26. Muslimov, A., Page, D.: Magnetic and spin history of very young pulsars. Astrophys. J. 458, 347 (1996)

    Article  ADS  Google Scholar 

  27. Neiner, C., Mathis, S., Saio, H., Lovekin, C., Eggenberger, P., Lee, U.: Seismic modelling of the late Be stars HD 181231 and HD 175869 observed with CoRoT: a laboratory for mixing processes. Astron. Astrophys. 539, A90 (2012)

    Article  ADS  Google Scholar 

  28. Salasnich, B., Bressan, A., Chiosi, C.: Evolution of massive stars under new mass-loss rates for RSG: is the mystery of the missing blue gap solved? Astron. Astrophys. 342, 131–152 (1999)

    ADS  Google Scholar 

  29. Spruit, H.C.: Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002)

    Article  ADS  Google Scholar 

  30. Talon, S., Zahn, J.-P.: Anisotropic diffusion and shear instabilities. Astron. Astrophys. 317, 749–751 (1997)

    ADS  Google Scholar 

  31. Zahn, J.P.: Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115–132 (1992)

    ADS  Google Scholar 

  32. Zahn, J.P., Brun, A.S., Mathis, S.: On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145–154 (2007)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. J.J. Green and Dr. Kévin Belkacem for the careful copy editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Meynet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meynet, G. et al. (2013). Models of Rotating Massive Stars: Impacts of Various Prescriptions. In: Goupil, M., Belkacem, K., Neiner, C., Lignières, F., Green, J. (eds) Studying Stellar Rotation and Convection. Lecture Notes in Physics, vol 865. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33380-4_1

Download citation

Publish with us

Policies and ethics