Skip to main content

Stability of the Strongest Magnetic Fields

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

Neutron stars with the strongest magnetic fields, known as magnetars, contain fields up to nine orders of magnitude stronger than those produced in the laboratory. While the field exterior to the star is thought to be dominated by a roughly dipolar structure, the interior field is entirely unknown, and is currently a hotly debated topic in astrophysics since it is thought to be connected with huge gamma-ray outburst, the giant flares, and possibly also with gravitational radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. C. Duncan, C. Thompson, Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts, ApJ 392, L9 (1992).

    Article  Google Scholar 

  2. C. Thompson, R. C. Duncan, The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts, MNRAS 275, 255 (1995).

    Google Scholar 

  3. The LIGO Scientific Collaboration: B. Abbott et al, Search for gravitational-wave bursts from soft gamma repeaters, PRL 101, 211102 (2008).

    Google Scholar 

  4. H. Sotani, K. D. Kokkotas, Alfvén polar oscillations of relativistic stars, MNRAS 395, 1163 (2009).

    Article  Google Scholar 

  5. A. Colaiuda, H. Beyer, K. D. Kokkotas, On the quasi-periodic oscillations in magnetars, MNRAS 396, 1441 (2009).

    Article  Google Scholar 

  6. J. Braithwaite, Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components, MNRAS 397, 763 (2009).

    Article  Google Scholar 

  7. V. Duez, J. Braithwaite, S. Mathis, On the stability of non-force-free magnetic equilibria in stars, ApJ 724, L34 (2010).

    Article  Google Scholar 

  8. B. Zink, Horizon: Accelerated general relativistic magnetohydrodynamics, arXiv:1102.5202 (2011).

    Google Scholar 

  9. P. D. Lasky, B. Zink, K. D. Kokkotas, K. Glampedakis, Hydromagnetic instabilities in neutron stars, ApJ 735, L20 (2011).

    Article  Google Scholar 

  10. B. Zink, P. D. Lasky, K. D. Kokkotas, Are gravitational waves from giant magnetar flares observable?, Phys. Rev. D 85, 024030 (2012).

    Article  Google Scholar 

  11. P. D. Lasky, B. Zink, K. D. Kokkotas, Gravitational waves and hydromagnetic instabilities in rotating magnetized neutron stars, arXiv:1203.3590 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos D. Kokkotas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kokkotas, K.D., Zink, B., Lasky, P. (2013). Stability of the Strongest Magnetic Fields. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_9

Download citation

Publish with us

Policies and ethics