Skip to main content

Simulation of Liquid-Liquid Equilibria with Molecular Models Optimized to Vapor-Liquid Equilibria and Model Development for Hydrazine and Two of Its Derivatives

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

In the chemical industry, knowledge on fluid phase equilibria is crucial for design and optimization of many technical processes. In a chemical plant, the costs for separation facilities constitute one of the highest investment outlays, typically in the order of 40–80% [15]. Not only vapor-liquid equilibrium(VLE) data are of interest, e.g. for distillation columns, but also other types of phase equilibria. For example, liquid-liquid equilibrium (LLE) data provide the basis for extraction processes. Classically, thermodynamic data for the design of such processes have to be measured experimentally and have to be aggregated by empirical correlations. For practical applications this leads to problems. For example, it is not possible to describe the entire fluid phase behavior consistently with a single model and set of parameters. Thus LLE data cannot be predicted reliably from VLE data (or vice versa) based on such correlations. Furthermore, the effort for measurements in the laboratory is very high, because every single fluid system of interest has to be measured individually. This approach particularly reaches its limits when multicomponent fluids or systems with multiple phases are of interest due to the sheer amount of independent variables. In a recent study by Hendriks et al. [10] about the demand of thermodynamic and transport properties in the chemical industry, the urgent need for a reliable and predictive approach to describe VLE as well as LLE with a single model and parameter set is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, M. P.; Tildesley, D. J.: Computer simulations of liquids. Oxford University Press, Oxford 1987.

    Google Scholar 

  2. Cohen-Adad, M. T.; Allali, I.; Getzen F. W. J. Solution Chem. 1987 16, 659.

    Google Scholar 

  3. Carleton, L. T. Ind. Eng. Chem. Chem. Eng. Data Series 1956 1, 21.

    Google Scholar 

  4. Dortmunder Datenbank, Mixture Properties. Version 6.3.0.384 2010.

    Google Scholar 

  5. Rowley, R. L.; Wilding, W. V.; Oscarson, J. L.; Yang, Y.; Zundel, N. A.; Daubert, T. E.; Danner, R. P.: DIPPR Data Compilation of Pure Chemical Properties. Design Institute for Physical Properties, AIChE, New York 2011.

    Google Scholar 

  6. Ferriol, M.; Laachach, A.; Cohen-Adad, M. T.; Getzen, F. W.; Jorat, L.; Noyel, G.; Huck, J.; Bureau, J. C. Fluid Phase Equilibr. 1992 71, 287.

    Google Scholar 

  7. Gray, C. G.; Gubbins K. E.: Theory of molecular fluids, 1. Fundamentals. Clarendon Press, Oxford 1984.

    Google Scholar 

  8. Gutowski, K. E.; Gurkan, B.; Maginn E. J. Pure Appl. Chem. 2009 81, 1799.

    Google Scholar 

  9. Guggenheim, E. A. J. Chem. Phys. 1945 13, 253.

    Google Scholar 

  10. Hendriks, E.; Kontogeorgis, G. M.; Dohrn, R.; de Hemptinne, J. C.; Economou I. G.; Žilnik, L. F.; Vesovic, V. Ind. Eng. Chem. Res. 2010 49, 11131.

    Google Scholar 

  11. Jones, J. E. Proc. Roy. Soc. 1924 106A, 441.

    Google Scholar 

  12. Jones, J. E. Proc. Roy. Soc. 1924 106A, 463.

    Google Scholar 

  13. Lobry de Bruyn, C. A.; Dito, J. W. Proc. Sec. Sci./K. Akad. Wet. Amsterdam 1902-1903 5, 171.

    Google Scholar 

  14. Hradetzky, G.; Lempe, D. A.: Merseburg Data Bank MDB for thermophysical data of pure compounds. Revision 7.1.0 2010.

    Google Scholar 

  15. Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall: Upper Saddle River, New Jersey 1999.

    Google Scholar 

  16. Pannetier, G.; Mignotte, P. Bull. Soc. Chim. Fr. 1961 143, 985.

    Google Scholar 

  17. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Shujun, S; Windus, T. L.; Dupuis, M.; Montgomery, A. M. J. Comput. Chem. 1993 14, 1347.

    Google Scholar 

  18. Stoll, J.; Vrabec, J.; Hasse, H. AIChE J. 2003 49, 2187.

    Google Scholar 

  19. Uchida, S.; Ogawa, S.; Yamaguchi, M. Jap. Sci. Rev. Eng. Sci. 1950 1, 41.

    Google Scholar 

  20. Vrabec, J.; Huang, Y.-L.; Hasse, H. Fluid Phase Equilibr. 2009 279, 120.

    Google Scholar 

  21. Vrabec, J.; Stoll, J.; Hasse, H. J. Phys. Chem. B 2001 105, 12126.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by Deutsche Forschungsgemeinschaft. This work was carried out under the auspices of the Boltzmann-Zuse Society (BZS) of Computational Molecular Engineering. The simulations were performed on the NEC SX-9, the NEC Nehalem Cluster and the Cray XE6 (Hermit) at the High Performance Computing Center Stuttgart (HLRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadran Vrabec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eckelsbach, S., Windmann, T., Elts, E., Vrabec, J. (2013). Simulation of Liquid-Liquid Equilibria with Molecular Models Optimized to Vapor-Liquid Equilibria and Model Development for Hydrazine and Two of Its Derivatives. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_33

Download citation

Publish with us

Policies and ethics