Skip to main content

Effect of Wall Roughness Seen by Particles in Turbulent Channel and Pipe Flows

  • Conference paper
  • First Online:
Book cover High Performance Computing in Science and Engineering ‘12

Abstract

In the present contribution it is shown in the context of large–eddy simulation (LES) and a Lagrangian treatment of the disperse phase that it is possible to considerably improve the particle statistics in turbulent channel and pipe flows by adopting a recently published wall roughness model for the solid phase. First, the model presented by Breuer etal.(Int J Multiphase Flow 43:157–175, 2012) is evaluated by means of the experiments conducted for a turbulent channel flow by Kussin(Experimentelle Studien zur Partikelbewegung und Turbulenzmodifikation in einem horizontalen Kanal bei unterschiedlichen Wandrauhigkeiten. Ph.D. thesis, Martin–Luther–Universität Halle–Wittenberg, Germany, 2004) and Kussin and Sommerfeld(Exp Fluids 33:143–159, 2002). As a second test case the experiments of Borèe and Caraman(Phys Fluids 17:055108–1–055108–9, 2005) carried out for a turbulent pipe flow were used. For both setups involving rough walls good agreement between experiment and simulation is achieved by considering the effect of the wall roughness on the particle motion. Especially the latter configuration is the precondition for an improved simulation of the complex particle–laden turbulent flow in a combustion chamber reported in the last issue (Breuer and Alletto, High Performance Computing in Science and Engineering ’11. Springer, Berlin/Heidelberg, 2012) and in Alletto and Breuer(Int J Multiphase Flow 45: 70–90, 2012) and Breuer and Alletto(Int J Heat Fluid Flow 35:2–12, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Alletto and M. Breuer. One–way, two–way and four–way coupled LES predictions of a particle–laden turbulent flow at high mass loading downstream of a confined bluff body. Int. J. Multiphase Flow, 45: 70–90, 2012.

    Article  Google Scholar 

  2. J. Bardina, J. H. Ferziger, and W. C. Reynolds. Improved subgrid–scale models for large–eddy simulations. AIAA Paper, 80–1357, 1980.

    Google Scholar 

  3. M. Benson, T. Tanaka, and J. K. Eaton. Effects of wall roughness on particle velocities in a turbulent channel flow. Trans. ASME J. Fluids Eng., 127: 250–256, 2005.

    Article  Google Scholar 

  4. J. Borèe and N. Caraman. Dilute bidispersed tube flow: Role of interclass collisions at increased loadings. Phys. Fluids, 17: 055108–1–055108–9, 2005.

    Google Scholar 

  5. J. Borée, T. Ishima, and I. Flour. The effects of mass loading and inter–particle collisions on the development of polydispersed two–phase flow downstream of a confined bluff body. J. Fluid Mech., 443: 129–165, 2001.

    Article  MATH  Google Scholar 

  6. M. Breuer. Large–eddy simulation of the sub–critical flow past a circular cylinder: Numerical and modeling aspects. Int. J. Numer. Meth. Fluids, 28(9): 1281–1302, 1998.

    Article  MATH  Google Scholar 

  7. M. Breuer. Direkte Numerische Simulation und Large–Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Universität Erlangen–Nürnberg, Berichte aus der Strömungstechnik. Shaker Verlag, Aachen, 2002. ISBN 3–8265–9958–6.

    Google Scholar 

  8. M. Breuer and M. Alletto. Two–phase flow predictions of the turbulent flow in a combustion chamber including particle–particle interactions. In J. Physics: Conference Series, volume 318, page 052002. IOP Publishing, 2011. 13th European Turbulence Conference (ETC13), Warsaw, Poland, Sept., 12–15, 2011.

    Google Scholar 

  9. M. Breuer and M. Alletto. Efficient simulation of particle–laden turbulent flows with high mass loadings using LES. Int. J. Heat Fluid Flow, 35: 2–12, 2012.

    Article  Google Scholar 

  10. M. Breuer and M. Alletto. Numerical simulation of particle–laden turbulent flows using LES. In W. E. Nagel, D. B. Kröner, and M. M. Resch, editors, High Performance Computing in Science and Engineering ’11, pages 337–352. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-23868-7.

    Google Scholar 

  11. M. Breuer, M. Alletto, and F. Langfeldt. Sandgrain roughness model for rough walls within Eulerian–Lagrangian predictions of turbulent flows. Int. J. Multiphase Flow, 43: 157–175, 2012.

    Article  Google Scholar 

  12. M. Breuer, H. T. Baytekin, and E. A. Matida. Prediction of aerosol deposition in 90 degrees bends using LES and an efficient Lagrangian tracking method. J. Aerosol Science, 37(11): 1407–1428, 2006.

    Article  Google Scholar 

  13. M. Breuer, P. Lammers, T. Zeiser, G. Hager, and G. Wellein. Direct numerical simulation of turbulent flow over dimples - code optimization for nec sx-8 plus flow results. In W.E. Nagel, D. Kröner, and M. Resch, editors, High Performance Computing in Science and Engineering ’07, 10th Results and Review Workshop on High Performance Computing in Science and Engineering, Oct. 04–05, 2007, pages 303–318. Springer, Berlin, 2008.

    Google Scholar 

  14. M. Breuer, E. A. Matida, and A. Delgado. Prediction of aerosol drug deposition using an Eulerian–Lagrangian method based on LES. In Int. Conf. on Multiphase Flow, July 9–13, 2007. Leipzig, Germany, 2007.

    Google Scholar 

  15. C. T. Crowe, M. P. Sharma, and D. E. Stock. The Particle-Source-In-Cell (PSI-CELL) model for gas–droplet flows. Trans. ASME J. Fluids Eng., 99: 325–322, 1977.

    Article  Google Scholar 

  16. C. T. Crowe, M. Sommerfeld, and Y. Tsuji. Multiphase Flows with Droplets and Particles. CRC Press, 1998.

    Google Scholar 

  17. S. F. Foerster, M. Y. Louge, H. Chang, and K. Allia. Measurements of the collision properties of small spheres. Phys. Fluids, 6(3): 1108–1115, 1994.

    Article  Google Scholar 

  18. Th. Frank, K. P. Schade, and D. Petrak. Numerical simulation and experimental investigation of a gas–solid two–phase flow in a horizontal channel. Int. J. Multiphase Flow, 19: 187–198, 1993.

    Article  MATH  Google Scholar 

  19. I. E. Idelchik. Handbook of Hydraulic Resistance. Springer, second edition, 1986. ISBN 3–540–15962–2.

    Google Scholar 

  20. N. A. Konan, O. Kannengieser, and O. Simonin. Stochastic modeling of the multiple rebound effects for particle–rough wall collisions. Int. J. Multiphase Flow, 35: 933–945, 2009.

    Article  Google Scholar 

  21. J. Kussin. Experimentelle Studien zur Partikelbewegung und Turbulenzmodifikation in einem horizontalen Kanal bei unterschiedlichen Wandrauhigkeiten. PhD thesis, Martin–Luther–Universität Halle–Wittenberg, Germany, 2004.

    Google Scholar 

  22. J. Kussin and M. Sommerfeld. Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids, 33: 143–159, 2002.

    Google Scholar 

  23. P. Lammers, G. Wellein, T. Zeiser, G. Hager, and M. Breuer. Have the vectors the continuing ability to parry the attack of the killer micros? In M. Resch, Th. Bönisch, K. Benkert, T. Furui, Y. Seo, and W. Bez, editors, High Performance Computing on Vector Systems, Proc. of the High Performance Computing Center Stuttgart, March 17–18, 2005, pages 25–37. Springer, Berlin, 2006. ISBN 3-540-29124-5.

    Google Scholar 

  24. C. Marchioli, V. Armenio, and A. Soldati. Simple and accurate scheme for fluid velocity interpolation for Eulerian–Lagrangian computation of dispersed flow in 3D curvilinear grids. Computers & Fluids, 36: 1187–1198, 2007.

    Article  MATH  Google Scholar 

  25. M. R. Maxey and J. J. Riley. Equation of motion for a small rigid sphere in a non–uniform flow. Phys. Fluids, 26: 883–889, 1983.

    Google Scholar 

  26. J. B. McLaughlin. Inertial migration of a small sphere in linear shear flows. J. Fluid Mech., 224: 261–274, 1991.

    Article  MATH  Google Scholar 

  27. S. Obermair, C. Gutschi, J. Woisetschläger, and Staudinger G. Flow pattern and agglomeration in the dust outlet of a gas cyclone investigated by phase Doppler anemometry. Powder Technology, 156: 34–42, 2005.

    Google Scholar 

  28. B. Oesterlé and T. Bui Dinh. Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Experiments Fluids, 19: 16–22, 1998.

    Google Scholar 

  29. J. Pozorski and S. V. Apte. Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid–scale dispersion. Int. J. Multiphase Flow, 35: 118–128, 2009.

    Article  Google Scholar 

  30. S. I. Rubinow and J. B. Keller. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech., 11: 447–459, 1961.

    Article  MathSciNet  Google Scholar 

  31. J. Smagorinsky. General circulation experiments with the primitive equations, I, The basic experiment. Monthly Weather Review, 91: 99–165, 1963.

    Article  Google Scholar 

  32. M. Sommerfeld. Analysis of collision effects for turbulent gas–particle flow in a horizontal channel: Part I. Particle transport. Int. J. Multiphase Flow, 29: 675–699, 2003.

    Google Scholar 

  33. M. Sommerfeld and N. Huber. Experimental analysis and modelling of particle–wall collisions. Int. J. Multiphase Flow, 25: 1457–1489, 1999.

    Article  MATH  Google Scholar 

  34. M. Sommerfeld and J. Kussin. Analysis of collision effects for turbulent gas–particle flow in a horizontal channel: Part II. Integral properties and validation. Int. J. Multiphase Flow, 29: 701–718, 2003.

    Google Scholar 

  35. M. Sommerfeld and J. Kussin. Wall roughness effect on pneumatic conveying of spherical particles in a narrow horizontal channel. Powder Technology, 142: 180–192, 2004.

    Article  Google Scholar 

  36. M. Sommerfeld, B. von Wachem, and R. Oliemans. Best practice guidelines for computational fluid dynamics of dispersed multiphase flows. In SIAMUF, Swedish Industrial Association for Multiphase Flows, ERCOFTAC, 2008. ISBN 978–91–633–3564–8.

    Google Scholar 

  37. K. D. Squires and O. Simonin. LES–DPS of the effect of wall roughness on dispersed–phase transport in particle–laden turbulent chanel flow. Int. J. Heat Fluid Flow, 27: 619–626, 2006.

    Article  Google Scholar 

  38. A. W. Vreman. Turbulence characteristics of particle–laden pipe flow. J. Fluid Mech., 584: 235–279, 2007.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The time–consuming computations were carried out on the national supercomputer NEC SX–9 at the High Performance Computing Center Stuttgart (grant no.: PARTICLE/pfs 12855), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Breuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Breuer, M., Alletto, M. (2013). Effect of Wall Roughness Seen by Particles in Turbulent Channel and Pipe Flows. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_21

Download citation

Publish with us

Policies and ethics