Skip to main content

Lagrangian Approach for the Prediction of Slagging and Fouling in Pulverized Coal Combustion

  • Conference paper
  • First Online:
Book cover High Performance Computing in Science and Engineering ‘12

Abstract

The deposition of ash particles in pulverized coal combustion provokes several problems for the operation of utility boilers. In order to avoid such problems, power plant operators have great interest in predicting the slagging and fouling tendency of the used fuel.For this purpose, an industrially highly relevant tool for the prediction of slagging and fouling which is applicable on high performance computing platforms such as vector machines or massively parallel systems has been developed. The model has been implemented into the CFD code AIOLOS and couples several relevant processes that are crucial for the build-up of depositions in power plants. It accounts for the flight of the ash particles through the furnace, the corresponding interaction with the flue gas and considers several deposition mechanisms on walls and tube bundles. In case of a predicted contact between a particle and a surface, the deposition rate is calculated based on the stickiness of the particle and the surface which is correlated with the melting behaviour. The model also takes into account the change of the heat transfer resistance of the already deposited particles and consequently the influence on the flue gas temperature.The model has exemplary been applied to a utility boiler with a thermal input of 730 MW (360 MWel) in order to demonstrate the capability of this engineering tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Couch, Understanding slagging and fouling in pf combustion, IEA Coal Research, London, 1994.

    Google Scholar 

  2. E. Raask, Mineral Impurities in Coal Combustion, Hemisphere Publishing Corparation, Washington, 1995.

    Google Scholar 

  3. S. Akbar, Numerical Simulation of Deposit Formation in Coal-Fired Utility Boilers with Biomass Co-Combustion, Ph.D. thesis, Universität Stuttgart (2011).

    Google Scholar 

  4. A. W. Date, Complete pressure correction algorithm for the solution of compressible Navier-Stokes equations on a nonstaggered grid, Numerical Heat Transfer, Part B: Fundamentals 29 (4) (1996) 441–458.

    Article  Google Scholar 

  5. J. Ströhle, Spectral Modelling of Radiative Heat Transfer in Industrial Furnaces, Shaker Verlag, 2003.

    Google Scholar 

  6. B. Magnussen, The eddy dissipation concept, in: 11th IEA Task Leaders Meeting “Energy Conservation in Combustion”, 1989.

    Google Scholar 

  7. M. Müller, U. Schnell, G. Scheffknecht, Oxy-coal Combustion Modeling at Semi-industrial Scale, in: W. E. Nagel, D. B. Kröner, M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’11, Springer, 2012, pp. 245–258.

    Google Scholar 

  8. A. Matschke, U. Schnell, G. Scheffknecht, Simulation of Triflux Heat Exchangers in Utility Boilers, in: W. E. Nagel, D. B. Kröner, M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’10, Springer, 2011, pp. 217–228.

    Google Scholar 

  9. U. Schnell, Numerical Modelling of Solid Fuel Combustion Processes using advanced CFD-based Simulation Tools, Progress in Computational Fluid Dynamics 1 (4) (2001) 208–218.

    Google Scholar 

  10. D. Förtsch, A Kinetic Model of Pulverised Coal Combustion for Computational Fluid Dynamics, Ph.D. thesis, Universität Stuttgart, Stuttgart (2003).

    Google Scholar 

  11. S. Richter, Numerische Simulation der Flugaschedeposition in kohlestaubgefeuerten Dampferzeugern, Ph.D. thesis, Universität Stuttgart, Stuttgart (2002).

    Google Scholar 

  12. C.T.Crowe, T. Troutt, J.N.Chung, Numerical Models for Two-Phase Turbulent Flows, Annu. Rev. Fluid. Mech 28 (1996) 11–43.

    Article  MathSciNet  Google Scholar 

  13. J. Shuen, L. Chen, G. Faeth, Evaluation of a Stochastic Model of Particle Dispersion in a Turbulent Round Jet, AIChE Journal 29 (1983) 167–170.

    Article  Google Scholar 

  14. H. Knaus, Simulation turbulenter reagierender Zweiphasenströmungen in industriellen Feuerungen mit komplexen Geometrien, Ph.D. thesis, Universität Stuttgart, Stuttgart (2001).

    Google Scholar 

  15. C. Sauer, Detaillierte gekoppelte Simulation von Kraftwerksfeuerung und –dampferzeuger, Ph.D. thesis, Universität Stuttgart, Stuttgart (2007).

    Google Scholar 

  16. J. Pyykönen, R. Paavilainen, J. Jokiniemi, Modelling the impact of the Burner Arrangement on Pulverised Coal-Fired Boiler Slagging, in: The Engineering Foundation Conference on ‘Impact of Mineral Impurities in Solid Fuel Combustion’, Kona, Hawaii, 1997.

    Google Scholar 

  17. S. K. Kaer, Numerical investigation of ash deposition in straw-fired boilers, Ph.D. thesis, Aalborg University, Aalborg, Denmark (2001).

    Google Scholar 

  18. P. Walsh, A. Sarofim, J.M.Beér, Fouling of Convection Heat Exchangers by Lignitic Coal Ash, Energy and Fuels 6 (1993) 709–715.

    Article  Google Scholar 

  19. O. Lemp, G. Scheffknecht, C. Wieland, H. Spliethoff, Evaluation of deposition models for CFD simulations of coal-fired utility boilers, in: 1st ERCOFTAC Conference on Simulation of Multiphase Flows in Gasification and Combustion, Dresden, Germany, September 18th-20th 2011.

    Google Scholar 

  20. F. Frandsen, L. Hansen, H. Sorensen, K. Hjuler, Characterisation of ashes from biofuels, Tech. rep. (1998).

    Google Scholar 

  21. GTT-Technologies, Factsage 6.2 (2012).

    Google Scholar 

  22. E. Yazhenskikh, K. Hack, M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags, part 5: Potassium oxide-alumina-silica, Calphad 35 (2011) 6–19.

    Article  Google Scholar 

  23. A. Zbogar, Heat transfer in ash deposits: A modelling tool-box, Progress in Energy and Combustion Science 31 (2005) 371–421.

    Article  Google Scholar 

  24. G. Richards, J. Harb, P. Slater, Simulation of ash deposit growth in a pulverized coal-fired pilot scale reactor, Energy and Fuels 7 (1993) 774–781.

    Article  Google Scholar 

  25. T. Sabel, Betriebsoptimierung von Kohlekraftwerksfeuerungen durch Experiment und Simulation, Ph.D. thesis, Universität Stuttgart (2004).

    Google Scholar 

Download references

Acknowledgements

This work and the specific COORETEC project is funded and supported by Bundesministerium für Wirtschaft und Technologie (BMWi) under grant number 0327744A,EnBW Kraftwerke AG, E.ON Energie AG, RWE Power AG, Vattenfall Europe Generation AG, Steag GmbH, ALSTOM Boiler Deutschland GmbH, Hitachi Power Europe GmbH, AZT Risk & Technology GmbH, Salzgitter Mannesmann Stainless Tubes GmbH, Sandvik Materials Technology Deutschland GmbH, ThyssenKrupp VDM GmbH, V&M Deutschland GmbH. The other project partners: MPA Universität Stuttgart, IEF2 Forschungszentrum Jülich, IWBT TU-Braunschweig and EST TU-Darmstadt are gratefully acknowledged for helpful discussions and suggestions. Computational resources have been provided by the High Performance Computing Center Stuttgart (HLRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Lemp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lemp, O., Schnell, U., Scheffknecht, G. (2013). Lagrangian Approach for the Prediction of Slagging and Fouling in Pulverized Coal Combustion. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_17

Download citation

Publish with us

Policies and ethics