Toward a Timed Theory of Channel Coding

  • Eugene Asarin
  • Nicolas Basset
  • Marie-Pierre Béal
  • Aldric Degorre
  • Dominique Perrin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7595)


The classical theory of constrained-channel coding deals with the following questions: given two languages representing a source and a channel, is it possible to encode source messages to channel messages, and how to realize encoding and decoding by simple algorithms, most often transducers. The answers to this kind of questions are based on the notion of entropy.

In the current paper, the questions and the results of the classical theory are lifted to timed languages. Using the notion of entropy of timed languages introduced by Asarin and Degorre, the question of timed coding is stated and solved in several settings.


Regular Language Channel Code Output Label Kolmogorov Complexity Time Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Asarin, E., Degorre, A.: Volume and Entropy of Regular Timed Languages: Analytic Approach. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 13–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Asarin, E., Degorre, A.: Volume and Entropy of Regular Timed Languages: Discretization Approach. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 69–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Degorre, A.: Two Size Measures for Timed Languages. In: FSTTCS. LIPIcs, vol. 8, pp. 376–387 (2010)Google Scholar
  5. 5.
    Basset, N.: Dynamique Symbolique et Langages Temporisés. Master’s thesis, Master Parisien de la Recherche Informatique (2010)Google Scholar
  6. 6.
    Basset, N., Asarin, E.: Thin and Thick Timed Regular Languages. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 113–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Béal, M.P., Berstel, J., Marcus, B., Perrin, D., Reutenauer, C., Siegel, P.H.: Variable-length codes and finite automata. In: Selected Topics in Information and Coding Theory, ch. 14, pp. 505–584. World Scientific Publishing Company (2010)Google Scholar
  8. 8.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, Encyclopedia of Mathematics and its Applications, vol. 129. Cambridge University Press (2009)Google Scholar
  9. 9.
    Blahut, R.E.: Digital Transmission of Information. Addison Wesley (1990)Google Scholar
  10. 10.
    Bojanczyk, M.: Data monoids. In: STACS. LIPIcs, vol. 9, pp. 105–116 (2011)Google Scholar
  11. 11.
    Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed languages. Information and Computation 182(2), 137–162 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Immink, K.: EFMPlus: The coding format of the multimedia compact disc. IEEE Transactions on Consumer Electronics 41(3), 491–497 (1995)CrossRefGoogle Scholar
  13. 13.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press (1995)Google Scholar
  14. 14.
    Marcus, B., Roth, R.M., Siegel, P.H.: Constrained systems and coding for recording channels. In: Handbook of Coding Theory, pp. 1635–1764. North-Holland (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eugene Asarin
    • 1
  • Nicolas Basset
    • 2
  • Marie-Pierre Béal
    • 2
  • Aldric Degorre
    • 1
  • Dominique Perrin
    • 2
  1. 1.LIAFA, University Paris Diderot and CNRSFrance
  2. 2.LIGM, University Paris-Est Marne-la-Vallée and CNRSFrance

Personalised recommendations