Skip to main content

Abstract Argumentation via Monadic Second Order Logic

  • Conference paper
Scalable Uncertainty Management (SUM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7520))

Included in the following conference series:

Abstract

We propose the formalism of Monadic Second Order Logic (MSO) as a unifying framework for representing and reasoning with various semantics of abstract argumentation. We express a wide range of semantics within the proposed framework, including the standard semantics due to Dung, semi-stable, stage, cf2, and resolution-based semantics. We provide building blocks which make it easy and straight-forward to express further semantics and reasoning tasks. Our results show that MSO can serve as a lingua franca for abstract argumentation that directly yields to complexity results. In particular, we obtain that for argumentation frameworks with certain structural properties the main computational problems with respect to MSO-expressible semantics can all be solved in linear time. Furthermore, we provide a novel characterization of resolution-based grounded semantics.

Dvořák’s and Woltran’s work has been funded by the Vienna Science and Technology Fund (WWTF) through project ICT08-028 and Szeider’s work has been funded by the European Research Council (ERC), grant reference 239962 (COMPLEX REASON).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amgoud, L., Devred, C.: Argumentation Frameworks as Constraint Satisfaction Problems. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 110–122. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baroni, P., Dunne, P.E., Giacomin, M.: On the resolution-based family of abstract argumentation semantics and its grounded instance. Artif. Intell. 175(3-4), 791–813 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer (2009)

    Google Scholar 

  5. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: A general schema for argumentation semantics. Artif. Intell. 168(1-2), 162–210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10-15), 619–641 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Delgrande, J.P., Schaub, T. (eds.) Proc. NMR, pp. 59–64 (2004)

    Google Scholar 

  8. Bistarelli, S., Campli, P., Santini, F.: Finding partitions of arguments with Dung’s properties via SCSPs. In: Chu, W.C., Wong, W.E., Palakal, M.J., Hung, C.C. (eds.) Proc. SAC, pp. 913–919. ACM (2011)

    Google Scholar 

  9. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Studia Logica 93(2), 109–145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic, a language theoretic approach, vol. 2012. Cambridge University Press (2011)

    Google Scholar 

  13. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discr. Appl. Math. 108(1-2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Courcelle, B.: Recognizability and second-order definability for sets of finite graphs. Tech. Rep. I-8634, Université de Bordeaux (1987)

    Google Scholar 

  16. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier, Amsterdam (1990)

    Google Scholar 

  17. Courcelle, B., Engelfriet, J., Rozenberg, G.: Context-free Handle-rewriting Hypergraph Grammars. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 253–268. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  18. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell. 171(10-15), 701–729 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dvořák, W., Szeider, S., Woltran, S.: Reasoning in argumentation frameworks of bounded clique-width. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proc. COMMA. FAIA, vol. 216, pp. 219–230. IOS Press (2010)

    Google Scholar 

  21. Dvořák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms for abstract argumentation. Artif. Intell. 186, 1–37 (2012)

    Article  Google Scholar 

  22. Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)

    Article  MATH  Google Scholar 

  23. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation frameworks. Argument and Computation 1(2), 147–177 (2010)

    Article  Google Scholar 

  24. Egly, U., Woltran, S.: Reasoning in argumentation frameworks using quantified boolean formulas. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) Proc. COMMA. FAIA, vol. 144, pp. 133–144. IOS Press (2006)

    Google Scholar 

  25. Gaggl, S.A., Woltran, S.: cf2 semantics revisited. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proc. COMMA. FAIA, vol. 216, pp. 243–254. IOS Press (2010)

    Google Scholar 

  26. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and database problems. The Computer Journal 51(3), 303–325 (2006)

    Article  Google Scholar 

  28. Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem - a game-theoretic approach. Discrete Optimization 8(4), 568–594 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an MSO-solver. In: Proc. of ALENEX 2012, pp. 55–63. SIAM (2012)

    Google Scholar 

  30. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tang, P., Lin, F.: Discovering theorems in game theory: Two-person games with unique pure nash equilibrium payoffs. Artif. Intell. 175(14-15), 2010–2020 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Toni, F., Sergot, M.: Argumentation and Answer Set Programming. In: Balduccini, M., Son, T.C. (eds.) Gelfond Feschrift. LNCS (LNAI), vol. 6565, pp. 164–180. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Weydert, E.: Semi-stable extensions for infinite frameworks. In: Proc. BNAIC, pp. 336–343 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dvořák, W., Szeider, S., Woltran, S. (2012). Abstract Argumentation via Monadic Second Order Logic. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds) Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science(), vol 7520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33362-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33362-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33361-3

  • Online ISBN: 978-3-642-33362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics