Skip to main content

Representing Uncertainty by Possibility Distributions Encoding Confidence Bands, Tolerance and Prediction Intervals

  • Conference paper
Scalable Uncertainty Management (SUM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7520))

Included in the following conference series:

Abstract

For a given sample set, there are already different methods for building possibility distributions encoding the family of probability distributions that may have generated the sample set. Almost all the existing methods are based on parametric and distribution free confidence bands. In this work, we introduce some new possibility distributions which encode different kinds of uncertainties not treated before. Our possibility distributions encode statistical tolerance and prediction intervals (regions). We also propose a possibility distribution encoding the confidence band of the normal distribution which improves the existing one for all sample sizes. In this work we keep the idea of building possibility distributions based on intervals which are among the smallest intervals for small sample sizes. We also discuss the properties of the mentioned possibility distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain ”goodness of fit” criteria based on stochastic processes. Ann. of Math. Stat. 23(2), 193–212 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aregui, A., Denœux, T.: Consonant Belief Function Induced by a Confidence Set of Pignistic Probabilities. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 344–355. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Aregui, A., Denœux, T.: Constructing predictive belief functions from continuous sample data using confidence bands. In: ISIPTA, pp. 11–20 (July 2007)

    Google Scholar 

  4. Arnold, B.C., Shavelle, R.M.: Joint confidence sets for the mean and variance of a normal distribution. Am. Stat. 52(2), 133–140 (1998)

    MathSciNet  Google Scholar 

  5. Birnbaum, Z.W.: Numerical tabulation of the distribution of kolmogorov’s statistic for finite sample size. J. Amer. Statistical Assoc. 47(259), 425–441 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakraborti, S., van der Laan, P.: Precedence probability and prediction intervals. J. Roy. Stat.Society. Series D (The Statistician) 49(2), 219–228 (2000)

    Article  Google Scholar 

  7. Cheng, R.C.H., Iles, T.C.: Confidence bands for cumulative distribution functions of continuous random variables. Technometrics 25(1), 77–86 (1983)

    Article  MATH  Google Scholar 

  8. Civanlar, M.R., Trussell, H.J.: Constructing membership functions using statistical data. Fuzzy Sets Syst. 18, 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delgado, M., Moral, S.: On the concept of possibility-probability consistency. Fuzzy Set. Syst. 21(3), 311–318 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Didier, D.: Possibility theory and statistical reasoning. Compu. Stat. Data An. 51, 47–69 (2006)

    Article  MATH  Google Scholar 

  11. Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities. Rel. Comp. (2004)

    Google Scholar 

  12. Dubois, D., Prade, H.: Fuzzy sets and systems - Theory and applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  13. Dubois, D., Prade, H.: Fuzzy sets and probability: Misunderstandings, bridges and gaps. In: IEEE Fuzzy Sys., pp. 1059–1068 (1993)

    Google Scholar 

  14. Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. In: IFSA, pp. 103–112 (1993)

    Google Scholar 

  15. Frey, J., Marrero, O., Norton, D.: Minimum-area confidence sets for a normal distribution. J. Stat. Plan. Inf. 139, 1023–1032 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hahn, G.J., Meeker, W.Q.: Statistical Intervals: A Guide for Practitioners. John Wiley and Sons (1991)

    Google Scholar 

  17. Hahn, G.J.: Factors for calculating two-sided prediction intervals for samples from a normal distribution. JASA 64(327), 878–888 (1969)

    Google Scholar 

  18. Hanson, D.L., Owen, D.B.: Distribution-free tolerance limits elimination of the requirement that cumulative distribution functions be continuous. Technometrics 5(4), 518–522 (1963)

    Article  MATH  Google Scholar 

  19. Howe, W.G.: Two-sided tolerance limits for normal populations, some improvements. J. Amer. Statistical Assoc. 64(326), 610–620 (1969)

    MATH  Google Scholar 

  20. Jesse, Frey: Optimal distribution-free confidence bands for a distribution function. J. Stat. Plan. Inf. 138(10), 3086–3098 (2008)

    Article  MATH  Google Scholar 

  21. Kanofsky, P., Srinivasan, R.: An approach to the construction of parametric confidence bands on cumulative distribution functions. Biometrika 59(3), 623–631 (1972)

    Article  MathSciNet  Google Scholar 

  22. Klir, G.J.: A principle of uncertainty and information invariance. Internat. J. General Systems 17(23), 249–275 (1990)

    Article  MATH  Google Scholar 

  23. Konijn, H.S.: Distribution-free and other prediction intervals. Am. Stat. 41(1), 11–15 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Krishnamoorthy, K., Mathew, T.: Comparison of approximation methods for computing tolerance factors for a multivariate normal population. Technometrics 41(3), 234–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Masson, M., Denoeux, T.: Inferring a possibility distribution from empirical data. Fuzzy Sets Syst. 157, 319–340 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smets, P.: The transferable belief model and other interpretations of dempster-shafer’s model, pp. 326–333 (1990)

    Google Scholar 

  27. Wald, A.: An extension of wilks’ method for setting tolerance limits. Ann. of Math. Stat. 14(1), 45–55 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wald, A., Wolfowitz, J.: Tolerance limits for a normal distribution. The Annals of Mathematical Statistics 17(2), 208–215 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wallis, W.A.: Tolerance intervals for linear regression. In: Proc. Second Berkeley Symp. on Math. Statist. and Prob., pp. 43–51 (1951)

    Google Scholar 

  30. Wilks, S.S.: Determination of sample sizes for setting tolerance limits. Ann. of Math. Stat. 12(1), 91–96 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Set. Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghasemi Hamed, M., Serrurier, M., Durand, N. (2012). Representing Uncertainty by Possibility Distributions Encoding Confidence Bands, Tolerance and Prediction Intervals. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds) Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science(), vol 7520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33362-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33362-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33361-3

  • Online ISBN: 978-3-642-33362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics