Skip to main content

Introduction

  • Chapter
  • First Online:
  • 786 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

The goal of this research review is to describe advances in the state of the art with regard to power system reliability [1] and voltage (in)stability [2,3]. We consider a given network configuration in the sense of statistical mechanics and examine the domains of (in)stability from the standpoint of intrinsic geometry. We introduce the geometric theory of statistical stability for power networks. In this respect, it is well known that, for effective power system planning, the appropriate reactive compensation [4] is essential with a suitable set of network parameters (resistance \(R\) and reactance \(X\)) and associated planning issues [5,6]. With a given network as the statistical system, such planning helps to reduce the apparent power by cutting reactive power losses in the network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Billinton, R.J. Ringle, A.J. Wood, Power-System Reliability Calculations (MIT Press Classics Series, 1973)

    Google Scholar 

  2. A. Chakraborty, P. Sen, An analytical investigation of voltage stability of an EHV transmission network based on load flow analysis. J. Inst. Eng. (India) Electr. Eng. Div. 76 (1995)

    Google Scholar 

  3. P. Kundur, Power System Stability and Control, EPRI Power System Engineering Series (McGraw-Hill, New York, 1994), p. 328

    Google Scholar 

  4. H. Frank, B. Landstorm, Power factor correction with thyristor-controlled capacitors. ASEA J. 45, 180–184 (1971)

    Google Scholar 

  5. R. Rajarman, F. Alvarado, A. Maniaci, R. Camfield, S. Jalali, Determination of location and amount of series compensation to increase power transfer capability. IEEE Trans. Power Syst. 13(2), 294–300 (1998)

    Google Scholar 

  6. H. Almasoud, Shunt capacitance for a practical 380 kV system. Int. J. Electr. Comput. Sci. 9(10), 23–27 (2009)

    Google Scholar 

  7. G. Bonnard, The problem posed by electrical power supply to industrial installations. Proc. IEEE Part B 132, 335–340 (1985)

    Google Scholar 

  8. K. Ramalingam, C.S. Indulkar, Transmission line performance with voltage sensitive loads. Int. J. Electr. Eng. Educ. 41(1), 64–70 (2004)

    Article  Google Scholar 

  9. H. Frank, S. Ivner, Thyristor controlled shunt compensation in power networks. ASEA J. 54, 121–127 (1981)

    Google Scholar 

  10. H.-T. Nguyen Vu, Voltage control with shunt capacitance on radial distribution line with high R/X factor Electrical Engineering, Polytechnic University of HCMC, 2005

    Google Scholar 

  11. B. Milosevic, M. Begovic, Capacitor placement for conservative voltage reduction on distribution feeders. IEEE Trans. Power Deliv. 193, 1360–1367 (2004)

    Google Scholar 

  12. E.H. Camm, Shunt capacitor over voltages and a reduction technique, in IEEE/PES, Transmission and Distribution Conference and Exposition, New Orland, LA, (1999)

    Google Scholar 

  13. G. Fusco, Adaptive Voltage Control in Power Systems: Modeling, Design, and Applications, Advances in Industrial Control (Springer, London, 2006). ISBN: 84628564X

    Google Scholar 

  14. Canadian Electrical Association, Static Compensation for Reactive Power Control (Context Publications, Winnipeg, 1984)

    Google Scholar 

  15. P.M. Anderson, R.G. Farmer, Series Compensation of Power Systems (Fred Laughter and PBLSH Inc. 1996)

    Google Scholar 

  16. J. Stones, A. Collinson, Introduction to power quality. Power Eng. J. 15(2), 58–64 (2001)

    Google Scholar 

  17. T.J. Miller, Reactive Power Control in Electrical Systems (Wiley, New York, 1982)

    Google Scholar 

  18. G. Radman, R.S. Raje, Power flow model/calculation for power system with multiple FACTS controllers. Electr. Power Syst. Res. (Elsevier, ScienceDirect) 77, 1521–1531 (2007)

    Article  Google Scholar 

  19. T.J.E. Miller (ed.), Reactance Power Control in Electric Systems (Wiley, New York, 1982)

    Google Scholar 

  20. M.H. Shwedhi, M.R. Sultan, Power factor correction capacitors: essentials and cautions. IEEE Power Eng. Soc. Summer Meet. 3, 1317–1322 (2000)

    Google Scholar 

  21. R.T. Saleh, A.E. Emanuel, Optimum shunt capacitor for power factor correction at busses with high distorted voltage. IEEE Trans. Power Deliv. PWRD 2(1), 165–173 (1987)

    Article  Google Scholar 

  22. C.-T. Chi, Evaluation of performance of a novel voltage compensation strategy for an ac contactor during voltage sags. Int. J. Innov. Comput. Inf. Control 4(11), 2809–2822 (2008)

    Google Scholar 

  23. A.R. Sefie, A new hybrid optimization method for optimum distribution capacitor planning. Mod. Appl. Sci. 3(4) (2009)

    Google Scholar 

  24. N. Ng, M.A. Salama, A.Y. Chikhani, Classification of capacitor allocation techniques. IEEE Trans. Power Deliv. 15(1), 387–392 (2000)

    Article  Google Scholar 

  25. T.V. Cutsem, V.H. Quintana, Network parameter estimation using online data with application to transformer tap position estimation. Gener. Transm. Distrib. IEEE Proc. C 135(1), 31–40 (2006)

    Article  Google Scholar 

  26. Q.-P. Zhang, C.-M. Wang, Z.-J. Hou, Power network parameter estimation method based on data mining technology. J. Shanghai Jiaotong Univ. (Sci.) 13(4), 468–472 (2008)

    Article  Google Scholar 

  27. Powerworld Simulator, Available from the homepage of Power World Corporation at website, www.powerworld.com (2012)

    Google Scholar 

  28. O. Anaya-Lara, E. Acha, Modeling and analysis of custom power systems by PSCAD/EMTDC. IEEE Trans. Power Deliv. PWDR 17(1), 266–272 (2002)

    Article  Google Scholar 

  29. G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67(3), 605–659 (1995)

    Article  MathSciNet  Google Scholar 

  30. B.N. Tiwari, Sur les corrections de la géométrie thermodynamique destrous noirs, Éditions Universitaires Européennes, Germany (2011). ISBN: 978-613-1-53539-0; arXiv:0801.4087v2 [hep-th]

    Google Scholar 

  31. S. Bellucci, B.N. Tiwari, On the microscopic perspective of black branes thermodynamic geometry. Entropy 12, 2096 (2010); arXiv:0808.3921v1

    Google Scholar 

  32. S. Bellucci, B.N. Tiwari, An exact fluctuating 1/2 BPS configuration. Springer, J. High Energy Phys. 05, 23 (2010), arXiv:0910.5314v1

    Google Scholar 

  33. J. Grainger Jr., W. Stevenson, Power System Analysis, 1st edn. (McGraw-Hill Science, Engineering, Math, New York, 1994)

    Google Scholar 

  34. G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605 (1995) [Erratum 68, 313 (1996)]

    Google Scholar 

  35. G. Ruppeiner, Thermodynamics: a riemannian geometric model. Phys. Rev. A 20, 1608 (1979)

    Article  Google Scholar 

  36. G. Ruppeiner, Thermodynamic critical fluctuation theory? Phys. Rev. Lett. 50, 287 (1983)

    Article  MathSciNet  Google Scholar 

  37. G. Ruppeiner, New thermodynamic fluctuation theory using path integrals. Phys. Rev. A 27, 1116 (1983)

    Article  Google Scholar 

  38. G. Ruppeiner, C. Davis, Thermodynamic curvature of the multicomponent ideal gas. Phys. Rev. A 41, 2200 (1990)

    Article  Google Scholar 

  39. M. Crappe, Electric Power Systems (ISTE Ltd, New York, 2008)

    Google Scholar 

  40. A.R. Bergen, V. Vittal, Power System Analysis, 2nd edn. (Prentice Hall, Upper Saddle River, 2000)

    Google Scholar 

  41. D.P. Brook, R.W. Dunn, Improving power system stability and economy by coordination of controller settings and power constraints. Power Engineering Society Winter Meeting (2001). IEEE vol. 2, pp. 499–503 (2001)

    Google Scholar 

  42. A.K. Al-Othman, M.R. Irving, Uncertainty modeling in power system state estimation. IEEE Proc. Gener. Transm. Distrib. 152(2), 233–239 (2005)

    Article  Google Scholar 

  43. D. Wu, H. Xin, D. Gan, Evaluating the impact of uncertain parameters in power system dynamic simulations. Electr. Power Syst. Res. 78(11), 1965–1971 (2008)

    Article  Google Scholar 

  44. M. Esmaili, H.A. Shayanfar, N. Amjady, Congestion management enhancing transient stability of power systems. Appl. Energy 87(3), 971–981 (2010)

    Article  Google Scholar 

  45. V. Ajjarapu, C. Christy, The continuation power flow: a tool for steady state voltage stability analysis. IEEE Trans. Power Syst. 7, 416–423 (1992)

    Article  Google Scholar 

  46. A.J. Calvaer, Voltage stability and collapses: a simple theory based on real and reactive currents. Revue Générale de l’Électricité 8, 1–17 (1986)

    Google Scholar 

  47. T.V. Cutsem et al., Determination of secure operating limits with respect to voltage collapse. IEEE Trans. Power Syst. 14(1), 327–333 (1999)

    Google Scholar 

  48. F. Murphy, Y. Smeers, Capacity expansion in imperfectly competitive restructured electricity market. Oper. Res. 53, 4 (2002)

    Google Scholar 

  49. Technical Report, Environmental and health impacts of electricity generation. International Energy Agency, Implementing Agreement for Hydropower Technologies and Programmes (2002)

    Google Scholar 

  50. C.W. Taylor, Concept of undervoltage load shedding for voltage stability. IEEE Trans. Power Deliv. 7, 480–488 (1992)

    Article  Google Scholar 

  51. J. Ma, Advanced techniques for power system stability analysis, Ph.D. Thesis, School of Information Technology and Electrical Engineering, University of Queensland, 2008

    Google Scholar 

  52. H.K. Clark, Voltage control and reactive supply problems, in IEEE Tutorial on Reactive Power: Basics, Problems and Solutions, ed. by G.B Shebl, 1987, pp. 17–27

    Google Scholar 

  53. IEEE Working Group on Voltage Stability, Suggested techniques for voltage stability analysis, IEEE Publication PWR 5, 93TH0620 (1993)

    Google Scholar 

  54. J. Bian, P. Rastgoufard, Power system voltage stability and security assessment. Electr. Power Syst. Res. 30(3), 197–200 (1994)

    Article  Google Scholar 

  55. M. Ribbens-Pavella, F.J. Evans, Direct methods for studying dynamics of large-scale electric power systems: a survey. Automatica 21(1), 1–21 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  56. L.D. Colvara, Stability analysis of power systems described with detailed models by automatic method. Int. J. Electr. Power Energy Syst. 31(4), 139–145 (2009)

    Article  Google Scholar 

  57. B.I. Lima Lopes, A.C. Zambroni de Souza, A Newton approach for long term stability studies in power systems. Appl. Math. Comput. 215(9), 3327–3334 (2010)

    Google Scholar 

  58. P.-A. Löf, D.J. Hill, S. Arnborg, G. Andersson, On the analysis of long-term voltage stability. Inter. J. Electr. Power Energy Syst. 15(4), 229–237 (1993)

    Article  Google Scholar 

  59. M.A. Kashem, V. Ganapathy, G.B. Selengor, Network reconfiguration for enhancement of voltage stability in distribution networks. IEEE Proc. Gener. Transm. Distrib. 147(3), 171–175 (2000)

    Article  Google Scholar 

  60. J.D. Glover, M.S. Sarma, Power Systems Analysis and Design, 3rd edn. (Brooks/Cole, Pacific Grove, 2002)

    Google Scholar 

  61. H. Kwatny, L. Bahar, A. Pasrija, Energy-like Lyapunov functions for power system stability analysis. IEEE Trans. Circuits Syst. 32(1), 1140–1149 (1985)

    Article  MATH  Google Scholar 

  62. Y.Z. Sun, X. Li, M. Zhao, Y.H. Song, New Lyapunov function for transient stability analysis and control of power systems with excitation control. Electr. Power Syst. Res. 57(2), 123–131 (2001)

    Google Scholar 

  63. K.S. Chandrashekhar, D.J. Hill, Cutset stability criterion for power systems using a structure-preserving model. Int. J. Electr. Power Energy Syst. 8(3), 146–157 (1986)

    Article  Google Scholar 

  64. J.E.O. Pessanha, O.R. Saavedra, J.C.R. Buzar, A.A. Paz, C.P. Poma, Power system stability reinforcement based on network expansion: a practical case. Int. J. Electr. Power Energy Syst. 29(3), 208–216 (2007)

    Google Scholar 

  65. N. Gupta, B.N. Tiwari, S. Bellucci, Geometric design and stability of power networks, arXiv:1011.2924 [stat.AP]

    Google Scholar 

  66. N. Gupta, B.N. Tiwari, S. Bellucci, Intrinsic geometric analysis of network reliability and voltage stability, arXiv:1011.2929 [stat.AP]

    Google Scholar 

  67. B.N. Tiwari, N. Gupta, S. Bellucci, State-space perspective to voltage instability. Inter. J. Control Autom.,(submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Bellucci .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Bellucci, S., Tiwari, B.N., Gupta, N. (2013). Introduction. In: Geometrical Methods for Power Network Analysis. SpringerBriefs in Electrical and Computer Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33344-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33344-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33343-9

  • Online ISBN: 978-3-642-33344-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics