Advertisement

Introduction to Random Fields

  • Alexander BulinskiEmail author
  • Evgeny Spodarev
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2068)

Abstract

This chapter gives preliminaries on random fields necessary for understanding of the next two chapters on limit theorems. Basic classes of random fields (Gaussian, stable, infinitely divisible, Markov and Gibbs fields, etc.) are considered. Correlation theory of stationary random functions as well as elementary nonparametric statistics and an overview of simulation techniques are discussed in more detail.

Keywords

Random Field Covariance Function Random Function Markov Random Field Random Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)zbMATHGoogle Scholar
  2. 13.
    Anderson, D.N.: A multivariate Linnik distribution. Stat. Probab. Lett. 14, 333–336 (1992)zbMATHCrossRefGoogle Scholar
  3. 14.
    Apanasovich, T.V., Genton, M.G.: Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97, 15–30 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 16.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 18.
    Askey, R.: Refinements of Abel summability for Jacobi series. In: More, C.C. (ed.) Harmonic Analysis on Homogeneous Spaces. Proceedings of Symposium in Pure Mathematics, vol. XXVI. AMS, Providence (1973)Google Scholar
  6. 52.
    Bardossy, A.: Introduction to Geostatistics. Tech. rep., University of Stuttgart, Stuttgart (1997)Google Scholar
  7. 53.
    Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds.): Lévy processes. Theory and Applications. Birkhäuser, Boston (2001)zbMATHGoogle Scholar
  8. 54.
    Barndorff-Nielsen, O.E., Schmiegel, J.: Spatio-temporal modeling based on Lévy processes, and its applications to turbulence. Russ. Math. Surv. 59, 65–90 (2004)MathSciNetCrossRefGoogle Scholar
  9. 68.
    Biermé, H., Meerschaert, M.M., Scheffler, H.P.: Operator scaling stable random fields. Stoch. Process. Appl. 117, 312–332 (2007)zbMATHCrossRefGoogle Scholar
  10. 81.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis, 4th edn. Wiley, Hoboken (2008)zbMATHGoogle Scholar
  11. 84.
    Brémaud, P.: Markov Chains: Gibbs fields, Monte Carlo simulation, and queues. Texts in Applied Mathematics, vol. 31. Springer, New York (1999)Google Scholar
  12. 85.
    Brillinger, D.R.: Time Series. Data Analysis and Theory. Holt, Rinehart and Winston, Inc., New York (1975)Google Scholar
  13. 86.
    Brix, A., Kendall, W.S.: Simulation of cluster point processes without edge effects. Adv. Appl. Prob. 34, 267–280 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 87.
    Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991)CrossRefGoogle Scholar
  15. 96.
    Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related Systems. World Scientific, Singapore (2007)Google Scholar
  16. 101.
    Bulinski, A.V., Kryzhanovskaya, N.: Convergence rate in CLT for vector-valued random fields with self-normalization. Probab. Math. Stat. 26, 261–281 (2006)MathSciNetzbMATHGoogle Scholar
  17. 102.
    Bulinski, A.V., Shiryaev, A.N.: Theory of Stochastic Processes. FIZMATLIT, Moscow (2005) (in Russian)Google Scholar
  18. 114.
    Chambers, J.M., Mallows, C., Stuck, B.W.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71, 340–344 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 115.
    Chan, G., Wood, A.T.A.: An algorithm for simulating stationary Gaussian random fields. J. R. Stat. Soc. Ser. C 46, 171–181 (1997)zbMATHCrossRefGoogle Scholar
  20. 121.
    Chen, T., Huang, T.S.: Region based hidden Markov random field model for brain MR image segmentation. World Academy of Sciences. Eng. Technol. 4, 233–236 (2005)Google Scholar
  21. 122.
    Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)zbMATHCrossRefGoogle Scholar
  22. 128.
    Cohen, S., Lacaux, C., Ledoux, M.: A general framework for simulation of fractional fields. Stoch. Proc. Appl. 118, 1489–1517 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 129.
    Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall, Boca Raton (2004)Google Scholar
  24. 136.
    Cressie, N.A.C.: Statistics for Spatial Data, 2nd edn. Wiley, New York (1993)Google Scholar
  25. 143.
    Davydov, Y., Molchanov, I., Zuyev, S.: Stable distributions and harmonic analysis on convex cones. C. R. Math. Acad. Sci. Paris 344, 321–326 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 145.
    Davydov, Y., Molchanov, I., Zuyev, S.: Stability for random measures, point processes and discrete semigroups. Bernoulli 17, 1015–1043 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 150.
    Dietrich, C.R., Newsam, G.N.: A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resource Res. 29, 2861–2869 (1993)CrossRefGoogle Scholar
  28. 151.
    Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. J. Sci. Comput. 18, 1088–1107 (1997)MathSciNetzbMATHGoogle Scholar
  29. 155.
    Dimitrakopoulos, R., Mustapha, H., Gloaguen, E.: High-order statistics of spatial random fields: Exploring spatial cumulants for modeling complex non-gaussian and non-linear phenomena. Math. Geosci. 42, 65–99 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 177.
    Gaetan, C., Guyon, X.: Spatial Statistics and Modeling. Springer, Berlin (2010)zbMATHCrossRefGoogle Scholar
  31. 180.
    Gelfand, A.E., Diggle, P.J., Fuentes, M., Guttorp, P.: Handbook of Spatial Statistics. CRC, Boca Raton (2010)zbMATHCrossRefGoogle Scholar
  32. 181.
    Genton, M.G.: Highly robust variogram estimation. Math. Geol. 30, 213–221 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 182.
    Genton, M.G.: Robustness problems in the analysis of spatial data. In: Moore, M. (ed.) Spatial Statistics: Methodological Aspects and Applications. Springer, New York (2001)Google Scholar
  34. 184.
    Georgii, H.O.: Gibbs Measures and Phase Transitions. Walter de Gruyter, Berlin (1988)zbMATHCrossRefGoogle Scholar
  35. 191.
    Gneiting, T.: Radial positive definite functions generated by Euclid’s hat. J. Multivariate Anal. 69, 88–119 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 192.
    Gneiting, T.: Nonseparable, stationary covariance functions for space-time data. J. Am. Stat. Assoc. 97, 590–600 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 193.
    Gneiting, T., Genton, M.G., Guttorp, P.: Geostatistical space-time models, stationarity, separability and full symmetry. In: Finkenstaedt, B., Held, L., Isham, V. (eds.) Statistics of Spatio-Temporal Systems. Monographs in Statistics and Applied Probability, pp. 151–175. Chapman & Hall, Boca Raton (2007)Google Scholar
  38. 194.
    Gneiting, T., Sasvári, Z.: The characterization problem for isotropic covariance functions. Math. Geol. 31, 105–111 (1999)MathSciNetzbMATHGoogle Scholar
  39. 195.
    Gneiting, T., Ševčíková, H., Percival, D.B., Schlather, M., Jiang, Y.: Fast and exact simulation of large Gaussian lattice systems in R 2: Exploring the limits. J. Comput. Graph. Stat. 15, 483–501 (2006)CrossRefGoogle Scholar
  40. 201.
    Grimmett, G.: A theorem about random fields. Bull. Lond. Math. Soc. 5, 81–84 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 202.
    Grimmett, G.: Probability Theory and Phase Transition. Kluwer, Dordrecht (1994)zbMATHGoogle Scholar
  42. 209.
    Guo, H., Lim, C.Y., Meerschaert, M.M.: Local Whittle estimator for anisotropic random fields. J. Multivariate Anal. 100, 993–1028 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 216.
    Guyon, X.: Random Fields on a Network: Modeling, Statistics, and Applications. Springer, New York (1995)zbMATHGoogle Scholar
  44. 217.
    de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)zbMATHGoogle Scholar
  45. 219.
    de Haan, L., Zhou, C.: On extreme value analysis of a spatial process. REVSTAT 6, 71–81 (2008)MathSciNetzbMATHGoogle Scholar
  46. 225.
    Heesch, D., Petrou, M.: Non-Gibbsian Markov random fields models for contextual labelling of structured scenes. In: Proceedings of British Machine Vision Conference, pp. 930–939 (2007)Google Scholar
  47. 240.
    Hellmund, G., Prokešová, M., Jensen, E.V.: Lévy-based Cox point processes. Adv. Appl. Prob. 40, 603–629 (2008)zbMATHCrossRefGoogle Scholar
  48. 241.
    Herglotz, G.: Über Potenzreihen mit positivem, reellen Teil im Einheitskreis. Ber. Verh. Sächs. Akad. Wiss. 63, 501–511 (1911)Google Scholar
  49. 244.
    Heyde, C.C., Gay, R.: Smoothed periodogram asymptotics and estimation for processes and fields with possible long–range dependence. Stoch. Process. Appl. 45, 169–182 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 268.
    Ivanov, A.V., Leonenko, N.N.: Statistical Analysis of Random Fields. Kluwer, Dordrecht (1989)zbMATHCrossRefGoogle Scholar
  51. 271.
    Janzer, H.S., Raudies, F., Neumann, H., Steiner, F.: Image processing and feature extraction from a perspective of computer vision and physical cosmology. In: Arendt, W., Schleich, W. (eds.) Mathematical Analysis of Evolution, Information and Complexity. Wiley, New York (2009)Google Scholar
  52. 276.
    Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic, London (1978)Google Scholar
  53. 277.
    Judge, G.G., Griffiths, W.E., Hill, R.C., Lee, T.C.: The Theory and Practice of Econometrics. Wiley, New York (1980)zbMATHGoogle Scholar
  54. 278.
    Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37, 2042–2065 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 280.
    Kailath, T.: A theorem of I. Schur and its impact on modern signal processing. In: Gohberg, I. (ed.) Schur Methods in Operator Theory and Signal Processing, Vol. I. Birkhäuser, Basel (1986)Google Scholar
  56. 283.
    Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)zbMATHGoogle Scholar
  57. 287.
    Karcher, W., Scheffler, H.P., Spodarev, E.: Efficient simulation of stable random fields and its applications. In: Capasso, V., Aletti, G., Micheletti, A. (eds.) Stereology and Image Analysis. Ecs10: Proceedings of The 10th European Congress of ISS, vol. 4, pp. 63–72. ESCULAPIO Pub. Co., Bologna (2009)Google Scholar
  58. 288.
    Karcher, W., Scheffler, H.P., Spodarev, E.: Simulation of infinitely divisible random fields. Comm. Stat. Simulat. Comput. 42, 215–246 (2013)CrossRefGoogle Scholar
  59. 293.
    Kent, J.T., Wood, A.T.A.: Estimating fractal dimension of a locally self-similar Gaussian process by using increments. J. R. Stat. Soc. B 59, 679–699 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 296.
    Khoshnevisian, D.: Multiparameter Processes. An Introduction to Random Fields. Springer, New York (2002)Google Scholar
  61. 297.
    Kinderman, R., Snell, J.L.: Markov Random Fields and Their Applications. Contemporary Mathematics, vol. 1. AMS, Providence (1980)Google Scholar
  62. 300.
    Kitanidis, P.K.: Introduction to Geostatistics: Applications to Hydrogeology. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  63. 308.
    Kolmogorov, A.N.: Wienersche Spiralen und einige andere interessante Kurven in Hilbertschem Raum. (Dokl.) Acad. Sci. USSR 26, 115–118 (1940)Google Scholar
  64. 310.
    Koralov, L.B., Sinai, Y.G.: Theory of Probability and Random Processes. Springer, New York (2009)Google Scholar
  65. 311.
    Kotz, S., Kozubowski, T.J., Podgorski, K.: The Laplace Distribution and Generalizations. Birkhäuser, Boston (2001)zbMATHCrossRefGoogle Scholar
  66. 318.
    Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992)zbMATHCrossRefGoogle Scholar
  67. 320.
    Lantuejoul, C.: Geostatistical Simulation – Models and Algorithms. Springer, Berlin (2002)zbMATHGoogle Scholar
  68. 325.
    Lawson, A.B., Denison, D.G.T.: Spatial Cluster Modelling: An Overview. In: Spatial Cluster Modelling, pp. 1–19. Chapman & Hall, Boca Raton (2002)Google Scholar
  69. 330.
    Li, S.Z.: Markov Random Fields Modeling in Computer Vision. Springer, New York (2001)CrossRefGoogle Scholar
  70. 333.
    Lim, S.C., Teo, L.P.: Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure. Stoch. Proc. Appl. 119, 1325–1356 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 338.
    Ma, F., Wei, M.S., Mills, W.H.: Correlation structuring and the statistical analysis of steady–state groundwater flow. SIAM J. Sci. Stat. Comput. 8, 848–867 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 342.
    Mandelbrot, B.B., Van Ness, J.: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 343.
    Matern, B.: Spatial Variation, 2nd edn. Springer, Berlin (1986)zbMATHGoogle Scholar
  74. 344.
    Mateu, J., Porcu, E., Gregori, P.: Recent advances to model anisotropic space-time data. Stat. Meth. Appl. 17, 209–223 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 364.
    Molchanov, I.: Convex geometry of max-stable distributions. Extremes 11, 235–259 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 365.
    Molchanov, I.: Convex and star-shaped sets associated with multivariate stable distributions. I. Moments and densities. J. Multivariate Anal. 100, 2195–2213 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 373.
    Moussa, A., Sbihi, A., Postaire, J.G.: A Markov random field model for mode detection in cluster analysis. Pattern Recogn. Lett. 29, 1197–1207 (2008)CrossRefGoogle Scholar
  78. 387.
    Pantle, U., Schmidt, V., Spodarev, E.: Central limit theorems for functionals of stationary germ–grain models. Ann. Appl. Probab. 38, 76–94 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 388.
    Pantle, U., Schmidt, V., Spodarev, E.: On the estimation of integrated covariance functions of stationary random fields. Scand. J. Stat. 37, 47–66 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 391.
    Paulauskas, V.: On Beveridge-Nelson decomposition and limit theorems for linear random fields. J. Multivariate Anal. 101, 621–639 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 408.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1997)Google Scholar
  82. 411.
    Rachev, S.T., Mittnik, S.: Stable Paretian Models in Finance. Wiley, New York (2000)zbMATHGoogle Scholar
  83. 413.
    Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theor. Relat. Fields 82, 451–487 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 422.
    Resnick, S.: Extreme Values, Regular Variation and Point Processes. Springer, New York (2008)zbMATHGoogle Scholar
  85. 425.
    Rosenblatt, M.: Stationary Sequences and Random Fields. Birkhäuser, Boston (1985)zbMATHCrossRefGoogle Scholar
  86. 428.
    Roy, P.: Ergodic theory, Abelian groups and point processes induced by stable random fields. Ann. Probab. 38, 770–793 (2010)zbMATHGoogle Scholar
  87. 429.
    Rozanov, Y.A.: Markov Random Fields. Springer, New York (1982)zbMATHCrossRefGoogle Scholar
  88. 430.
    Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall, Boca Raton (2005)zbMATHCrossRefGoogle Scholar
  89. 432.
    Samorodnitsky, G., Taqqu, M.: Stable non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton (1994)zbMATHGoogle Scholar
  90. 435.
    Sasvári, A.: Positive Definite and Definitizable Functions. Akademie-Verlag, Berlin (1994)zbMATHGoogle Scholar
  91. 436.
    Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  92. 437.
    Schlather, M.: Introduction to positive definite functions and to unconditional simulation of random fields. Tech. rep., Lancaster University (1999)Google Scholar
  93. 439.
    Schlather, M.: Models for stationary max-stable random fields. Extremes 5, 33–44 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 440.
    Schlather, M.: Construction of positive definite functions. Lecture at 15th Workshop on Stoch. Geometry, Stereology and Image Analysis, Blaubeuren (2009)Google Scholar
  95. 441.
    Schlather, M.: Some covariance models based on normal scale mixtures. Bernoulli 16, 780–797 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 451.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  97. 453.
    Schoenberg, I.J.: Metric spaces and complete monotone functions. Ann. Math 39, 811–841 (1938)MathSciNetCrossRefGoogle Scholar
  98. 454.
    Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. Wiley, Chichester (2003)CrossRefGoogle Scholar
  99. 471.
    Shinozuka, M., Jan, C.M.: Digital simulation of random processes and its applications. J. Sound Vib. 25, 111–128 (1972)CrossRefGoogle Scholar
  100. 472.
    Shiryaev, A.N.: Probability. Graduate Texts in Mathematics, vol. 95, 2nd edn. Springer, New York (1996)Google Scholar
  101. 473.
    Shiryaev, A.N.: Essentials of Stochastic Finance. Facts, Models, Theory. World Scientific, River Edge (1999)Google Scholar
  102. 478.
    Speed, T.P., Kiiveri, H.T.: Gaussian Markov distributions over finite graphs. Ann. Stat. 14, 138–150 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 486.
    Stoev, S.A.: On the ergodicity and mixing of max-stable processes. Stoch. Process. Appl. 118, 1679–1705 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 487.
    Stoev, S.A., Taqqu, M.S.: Extremal stochastic integrals: a parallel between max-stable processes and α-stable processes. Extremes 8, 237–266 (2006)MathSciNetCrossRefGoogle Scholar
  105. 489.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  106. 490.
    Stoyan, D., Stoyan, H., Jansen, U.: Umweltstatistik. Teubner, Stuttgart (1997)zbMATHCrossRefGoogle Scholar
  107. 495.
    Tyurin, I.S.: Sharpening the upper bounds for constants in Lyapunov’s theorem. Russ. Math. Surv. 65, 586–588 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 496.
    Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht (1999)zbMATHCrossRefGoogle Scholar
  109. 497.
    Véhel, J.L.: Fractals in Engineering: From Theory to Industrial Applications. Springer, New York (1997)Google Scholar
  110. 504.
    Wackernagel, H.: Multivariate Geostatistics. An Introduction with Applications, 3rd edn. Springer, Berlin (2003)Google Scholar
  111. 506.
    Wang, Y., Stoev, S.A., Roy, P.: Ergodic properties of sum- and max- stable stationary random fields via null and positive group actions. Ann. Probab. (2012, to appear). ArXiv:0911.0610Google Scholar
  112. 518.
    Willinger, W., Paxson, V., Taqqu, M.S.: Self-similarity and heavy tails: Structural modeling of network traffic. A Practical Guide to Heavy Tails, pp. 27–53. Birkhäuser, Boston (1998)Google Scholar
  113. 520.
    Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd edn. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  114. 521.
    Wood, A.T.A., Chan, G.: Simulation of stationary Gaussian processes in [0, 1]d. J. Comput. Graph. Stat. 3, 409–432 (1994)MathSciNetGoogle Scholar
  115. 523.
    Yuan, J., Subba Rao, T.: Higher order spectral estimation for random fields. Multidimens. Syst. Signal Process. 4, 7–22 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 530.
    Zolotarev, V.M.: Modern Theory of Summation of Random Variables. VSP, Utrecht (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Ulm UniversityUlmGermany

Personalised recommendations