Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2068))

Abstract

Random polytopes arise naturally as convex hulls of random points selected according to a given distribution. In a dual way, they can be derived as intersections of random halfspaces. Still another route to random polytopes is via the consideration of special cells and faces associated with random mosaics. The study of random polytopes is based on the fruitful interplay between geometric and probabilistic methods. This survey describes some of the geometric concepts and arguments that have been developed and applied in the context of random polytopes. Among these are duality arguments, geometric inequalities and stability results for various geometric functionals, associated bodies and zonoids as well as methods of integral geometry. Particular emphasis is given to results on the shape of large cells in random tessellations, as suggested in Kendall’s problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Affentranger, F.: The convex hull of random points with spherically symmetric distributions. Rend. Sem. Mat. Univ. Pol. Torino 49, 359–383 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Affentranger, F., Schneider, R.: Random projections of regular simplices. Discrete Comput. Geom. 7, 219–226 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alonso-Gutiérrez, D.: On the isotropy constant of random convex sets. Proc. Am. Math. Soc. 136, 3293–3300 (2008)

    Article  MATH  Google Scholar 

  4. Bárány, I.: Random polytopes in smooth convex bodies. Mathematika 39, 81–92 (1992). Corrigendum: Mathematika 51, 31 (2005)

    Google Scholar 

  5. Bárány, I.: Random polytopes, convex bodies, and approximation. In: Baddeley, A.J., Bárány, I., Schneider, R., Weil, W. (eds.) Stochastic Geometry - Lecture Notes in Mathematics, vol. 1892. Springer, Berlin (2007)

    Google Scholar 

  6. Bárány, I.: Random points and lattice points in convex bodies. Bull. Am. Math. Soc. 45, 339–365 (2008)

    Article  MATH  Google Scholar 

  7. Bárány, I., Buchta, C.: Random polytopes in a convex polytope, independence of shape, and concentration of vertices. Math. Ann. 297, 467–497 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bárány, I., Larman, D.G.: Convex bodies, economic cap coverings, random polytopes. Mathematika 35, 274–291 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bárány, I., Reitzner, M.: On the variance of random polytopes. Adv. Math. 225, 1986–2001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bárány, I., Reitzner, M.: Poisson polytopes. Ann. Probab. 38, 1507–1531 (2010)

    Article  MATH  Google Scholar 

  11. Bárány, I., Vu, V.: Central limit theorems for Gaussian polytopes. Ann. Probab. 35, 1593–1621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baryshnikov, Y.M., Vitale, R.A.: Regular simplices and Gaussian samples. Discrete Comput. Geom. 11, 141–147 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Baumstark, V., Last, G.: Some distributional results for Poisson-Voronoi tessellations. Adv. Appl. Probab. 39, 16–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baumstark, V., Last, G.: Gamma distributions for stationary Poisson flat processes. Adv. Appl. Probab. 41, 911–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Böröczky, K.J., Fodor, F., Hug, D.: The mean width of random polytopes circumscribed around a convex body. J. Lond. Math. Soc. 81, 499–523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Böröczky, K.J., Fodor, F., Reitzner, M., Vígh, V.: Mean width of random polytopes in a reasonably smooth convex body. J. Multivariate Anal. 100 (2009)

    Google Scholar 

  17. Böröczky, K.J., Hoffmann, L.M., Hug, D.: Expectation of intrinsic volumes of random polytopes. Period. Math. Hungar. 57, 143–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Böröczky, K.J., Hug, D.: Stability of the reverse Blaschke-Santaló inequality for zonoids and applications. Adv. Appl. Math. 44, 309–328 (2010)

    Article  MATH  Google Scholar 

  19. Böröczky, K.J., Schneider, R.: The mean width of circumscribed random polytopes. Can. Math. Bull. 53, 614–628 (2010)

    Article  MATH  Google Scholar 

  20. Buchta, C.: An identity relating moments of functionals of convex hulls. Discrete Comput. Geom. 33, 125–142 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Buchta, C., Reitzner, M.: The convex hull of random points in a tetrahedron: Solution of Blaschke’s problem and more general results. J. Reine Angew. Math. 536, 1–29 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Calka, P.: The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. 34, 702–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Calka, P., Schreiber, T.: Limit theorems for the typical Poisson-Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33, 1625–1642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dafnis, N., Giannopoulos, A., Guédon, O.: On the isotropic constant of random polytopes. Adv. Geom. 10, 311–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Donoho, D.L., Tanner, J.: Counting faces of randomly projected polytopes when the projection radically lowers dimension. J. Am. Math. Soc. 22, 1–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Donoho, D.L., Tanner, J.: Exponential bounds implying construction of compressed sensing matrices, error-correcting codes, and neighborly polytopes by random sampling. IEEE Trans. Inform. Theor. 56, 2002–2016 (2010)

    Article  MathSciNet  Google Scholar 

  28. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9, 586–596 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gatzouras, D., Giannopoulos, A.: A large deviations approach to the geometry of random polytopes. Mathematika 53, 173–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gatzouras, D., Giannopoulos, A., Markoulakis, N.: Lower bound for the maximal number of facets of a 0/1 polytope. Discrete Comput. Geom. 34, 331–349 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Goldman, A.: Sur une conjecture de D. G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne. Ann. Probab. 26, 1727–1750 (1998)

    MATH  Google Scholar 

  32. Groemer, H.: On the mean value of the volume of a random polytope in a convex set. Arch. Math. 25, 86–90 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  34. Hartzoulaki, M., Paouris, G.: Quermassintegrals of a random polytope in a convex body. Arch. Math. 80, 430–438 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Hueter, I.: Limit theorems for the convex hull of random points in higher dimensions. Trans. Am. Math. Soc. 351, 4337–4363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hug, D.: Contributions to affine surface area. Manuscripta Math. 91, 283–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hug, D.: Curvature relations and affine surface area for a general convex body and its polar. Results Math. 29, 233–248 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Hug, D., Munsonius, O., Reitzner, M.: Asymptotic mean values of Gaussian polytopes. Contr. Algebra Geom. 45, 531–548 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Hug, D., Reitzner, M.: Gaussian polytopes: variances and limit theorems. Adv. Appl. Probab. 37, 297–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hug, D., Reitzner, M., Schneider, R.: Large Poisson–Voronoi cells and Crofton cells. Adv. Appl. Probab. 36, 667–690 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hug, D., Reitzner, M., Schneider, R.: The limit shape of the zero cell in a stationary Poisson hyperplane tessellation. Ann. Probab. 32, 1140–1167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hug, D., Schneider, R.: Large cells in Poisson-Delaunay tessellations. Discrete Comput. Geom. 31, 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hug, D., Schneider, R.: Large typical cells in Poisson-Delaunay mosaics. Rev. Roum. Math. Pures Appl. 50, 657–670 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Hug, D., Schneider, R.: Asymptotic shapes of large cells in random tessellations. Geom. Funct. Anal. 17, 156–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hug, D., Schneider, R.: Typical cells in Poisson hyperplane tessellations. Discrete Comput. Geom. 38, 305–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hug, D., Schneider, R.: Large faces in Poisson hyperplane mosaics. Ann. Probab. 38, 1320–1344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hug, D., Schneider, R.: Faces of Poisson-Voronoi mosaics. Probab. Theor. Relat. Fields 151, 125–151 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hug, D., Schneider, R.: Faces with given directions in anisotropic Poisson hyperplane tessellations. Adv. Appl. Probab. 43, 308–321 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kaltenbach, F.J.: Asymptotisches Verhalten zufälliger konvexer Polyeder. Doctoral thesis, Albert-Ludwigs-Universität, Freiburg i. Br. (1990)

    Google Scholar 

  50. Klartag, B.: An isomorphic version of the slicing problem. J. Funct. Anal. 218, 372–394 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Klartag, B., Kozma, G.: On the hyperplane conjecture for random convex sets. Israel J. Math. 170, 253–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kovalenko, I.N.: A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons. J. Appl. Math. Stoch. Anal. 12, 301–310 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lao, W., Mayer, M.: U-max-statistics. J. Multivariate Anal. 99, 2039–2052 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Litvak, A.E., Pajor, A., Rudelson, M., Tomczak-Jaegermann, N.: Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195, 491–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ludwig, M., Reitzner, M.: A classification of sl(n) invariant values. Ann. Math. 172, 1219–1267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mayer, M., Molchanov, I.: Limit theorems for the diameter of a random sample in the unit ball. Extremes 10, 129–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mecke, J.: Random tessellations generated by hyperplanes. In: Ambartzumian, R.V., Weil, W. (eds.) Stochastic Geometry, Geometric Statistics, Stereology (Proc. Conf. Oberwolfach, 1983). Teubner, Leipzig (1984)

    Google Scholar 

  58. Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1376. Springer, Berlin (1989)

    Google Scholar 

  59. Raynaud, H.: Sur l’enveloppe convexe des nuages de points aléatoires dans R n. I. J. Appl. Probab. 7, 35–48 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  60. Reitzner, M.: Random polytopes and the Efron-Stein jackknife inequality. Ann. Probab. 31, 2136–2166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  61. Reitzner, M.: Central limit theorems for random polytopes. Probab. Theor. Relat. Fields 133, 483–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Reitzner, M.: Random polytopes. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry. Oxford University Press, London (2010)

    Google Scholar 

  63. Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 2, 75–84 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  64. Schneider, R.: Extremal properties of random mosaics. In: Bárány, I., Böröczky, K.J., Fejes Tóth, G., Pach, J. (eds.) Geometry - Intuitive, Discrete, and Convex. Springer, Berlin (to appear)

    Google Scholar 

  65. Schneider, R.: Approximation of convex bodies by random polytopes. Aequationes Math. 32, 304–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  66. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  67. Schneider, R.: Recent results on random polytopes. Boll. Unione Mat. Ital. 1, 17–39 (2008)

    MathSciNet  MATH  Google Scholar 

  68. Schneider, R.: Weighted faces of Poisson hyperplane tessellations. Adv. Appl. Probab. 41, 682–694 (2009)

    Article  MATH  Google Scholar 

  69. Schneider, R.: Vertex numbers of weighted faces in Poisson hyperplane mosaics. Discrete Comput. Geom. 44, 599–607 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  71. Schneider, R., Wieacker, J.A.: Random polytopes in a convex body. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 52, 69–73 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  72. Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  73. Vu, V.: Sharp concentration of random polytopes. Geom. Funct. Anal. 15, 1284–1318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  74. Vu, V.: Central limit theorems for random polytopes in a smooth convex set. Adv. Math. 207, 221–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  75. Wieacker, J.A.: Einige Probleme der polyedrischen Approximation. Diplomarbeit, Albert-Ludwigs-Universität, Freiburg i. Br. (1978)

    Google Scholar 

  76. Ziegler, G.: Lectures on 0/1 polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes – Combinatorics and Computation, DMV Seminars. Birkhäuser, Basel (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hug, D. (2013). Random Polytopes. In: Spodarev, E. (eds) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol 2068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33305-7_7

Download citation

Publish with us

Policies and ethics