Skip to main content

Asymptotic Methods for Random Tessellations

  • Chapter
  • First Online:
Stochastic Geometry, Spatial Statistics and Random Fields

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2068))

Abstract

In this chapter, we are interested in two classical examples of random tessellations which are the Poisson hyperplane tessellation and Poisson–Voronoi tessellation. The first section introduces the main definitions, the application of an ergodic theorem and the construction of the so-called typical cell as the natural object for a statistical study of the tessellation. We investigate a few asymptotic properties of the typical cell by estimating the distribution tails of some of its geometric characteristics (inradius, volume, fundamental frequency). In the second section, we focus on the particular situation where the inradius of the typical cell is large. We start with precise distributional properties of the circumscribed radius that we use afterwards to provide quantitative information about the closeness of the cell to a ball. We conclude with limit theorems for the number of hyperfaces when the inradius goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avram, F., Bertsimas, D.: On central limit theorems in geometrical probability. Ann. Appl. Probab. 3, 1033–1046 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baccelli, F., Blaszczyszyn, B.: Stochastic Geometry and Wireless Networks. Now Publishers, Delft (2009)

    Google Scholar 

  3. Bandle, C.: Isoperimetric inequalities and applications. Monographs and Studies in Mathematics, vol. 7. Pitman (Advanced Publishing Program), Boston (1980)

    Google Scholar 

  4. Bárány, I., Reitzner, M.: On the variance of random polytopes. Adv. Math. 225, 1986–2001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bárány, I., Reitzner, M.: Poisson polytopes. Ann. Probab. 38, 1507–1531 (2010)

    Article  MATH  Google Scholar 

  6. Bowman, F.: Introduction to Bessel functions. Dover, New York (1958)

    MATH  Google Scholar 

  7. Bürgisser, P., Cucker, F., Lotz, M.: Coverage processes on spheres and condition numbers for linear programming. Ann. Probab. 38, 570–604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calka, P.: Mosaïques Poissoniennes de l’espace Euclidian. Une extension d’un résultat de R. E. Miles. C. R. Math. Acad. Sci. Paris 332, 557–562 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Calka, P.: The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. 34, 702–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calka, P.: Tessellations. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry. Oxford Univerxity Press, London (2010)

    Google Scholar 

  11. Calka, P., Schreiber, T.: Limit theorems for the typical Poisson-Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33, 1625–1642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calka, P., Schreiber, T., Yukich, J.E.: Brownian limits, local limits and variance asymptotics for convex hulls in the ball. Ann. Probab. (2012) (to appear)

    Google Scholar 

  14. Cowan, R.: The use of the ergodic theorems in random geometry. Adv. in Appl. Prob. 10 (suppl.), 47–57 (1978)

    Google Scholar 

  15. Cowan, R.: Properties of ergodic random mosaic processes. Math. Nachr. 97, 89–102 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dryden, I.L., Farnoosh, R., Taylor, C.C.: Image segmentation using Voronoi polygons and MCMC, with application to muscle fibre images. J. Appl. Stat. 33, 609–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  18. Fleischer, F., Gloaguen, C., Schmidt, H., Schmidt, V., Schweiggert, F.: Simulation algorithm of typical modulated Poisson–Voronoi cells and application to telecommunication network modelling. Jpn. J. Indust. Appl. Math. 25, 305–330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Foss, S., Zuyev, S.: On a Voronoi aggregative process related to a bivariate Poisson process. Adv. Appl. Probab. 28, 965–981 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gerstein, M., Tsai, J., Levitt, M.: The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J. Mol. Biol. 249, 955–966 (1995)

    Article  Google Scholar 

  21. Gilbert, E.N.: Random subdivisions of space into crystals. Ann. Math. Stat. 33, 958–972 (1962)

    Article  MATH  Google Scholar 

  22. Gilbert, E.N.: The probability of covering a sphere with n circular caps. Biometrika 52, 323–330 (1965)

    MathSciNet  MATH  Google Scholar 

  23. Goldman, A.: Le spectre de certaines mosaïques Poissoniennes du plan et l’enveloppe convexe du pont Brownien. Probab. Theor. Relat. Fields 105, 57–83 (1996)

    Article  MATH  Google Scholar 

  24. Goldman, A.: Sur une conjecture de D. G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne. Ann. Probab. 26, 1727–1750 (1998)

    MATH  Google Scholar 

  25. Goldman, A., Calka, P.: On the spectral function of the Poisson-Voronoi cells. Ann. Inst. H. Poincaré Probab. Stat. 39, 1057–1082 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Goudsmit, S.: Random distribution of lines in a plane. Rev. Mod. Phys. 17, 321–322 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hall, P.: On the coverage of k-dimensional space by k-dimensional spheres. Ann. Probab. 13, 991–1002 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Heinrich, L., Schmidt, H., Schmidt, V.: Central limit theorems for Poisson hyperplane tessellations. Ann. Appl. Probab. 16, 919–950 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hug, D.: Random mosaics. In: Baddeley, A.J., Bárány, I., Schneider, R., Weil, W. (eds.) Stochastic Geometry - Lecture Notes in Mathematics, vol. 1892. Springer, Berlin (2007)

    Google Scholar 

  30. Hug, D., Reitzner, M., Schneider, R.: Large Poisson–Voronoi cells and Crofton cells. Adv. Appl. Probab. 36, 667–690 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hug, D., Reitzner, M., Schneider, R.: The limit shape of the zero cell in a stationary Poisson hyperplane tessellation. Ann. Probab. 32, 1140–1167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hug, D., Schneider, R.: Asymptotic shapes of large cells in random tessellations. Geom. Funct. Anal. 17, 156–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966)

    Article  MATH  Google Scholar 

  34. Kovalenko, I.N.: A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons. J. Appl. Math. Stoch. Anal. 12, 301–310 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Last, G.: Stationary partitions and Palm probabilities. Adv. Appl. Probab. 38, 602–620 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lautensack, C., Zuyev, S.: Random Laguerre tessellations. Adv. Appl. Probab. 40, 630–650 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Maier, R., Schmidt, V.: Stationary iterated tessellations. Adv. Appl. Probab. 35, 337–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mecke, J.: Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 9, 36–58 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mecke, J.: On the relationship between the 0-cell and the typical cell of a stationary random tessellation. Pattern Recogn. 32, 1645–1648 (1999)

    Article  Google Scholar 

  40. Miles, R.E.: Random polygons determined by random lines in a plane. Proc. Natl. Acad. Sci. USA 52, 901–907 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  41. Miles, R.E.: Random polygons determined by random lines in a plane II. Proc. Natl. Acad. Sci. USA 52, 1157–1160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  42. Miles, R.E.: The various aggregates of random polygons determined by random lines in a plane. Adv. Math. 10, 256–290 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. Møller, J.: Random Johnson-Mehl tessellations. Adv. Appl. Probab. 24, 814–844 (1992)

    Article  Google Scholar 

  44. Møller, J.: Lectures on random Voronoi tessellations. In: Lecture Notes in Statistics, vol. 87. Springer, New York (1994)

    Google Scholar 

  45. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Chichester (2002)

    MATH  Google Scholar 

  46. Nagaev, A.V.: Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain. Ann. Inst. Stat. Math. 47, 21–29 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nagel, W., Weiss, V.: Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration. Adv. Appl. Probab. 37, 859–883 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. With a foreword by D. G. Kendall. Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  49. Paroux, K.: Quelques théorèmes centraux limites pour les processus Poissoniens de droites dans le plan. Adv. Appl. Probab. 30, 640–656 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Reitzner, M.: Random polytopes and the Efron-Stein jackknife inequality. Ann. Probab. 31, 2136–2166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Reitzner, M.: Central limit theorems for random polytopes. Probab. Theor. Relat. Fields 133, 483–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 2, 75–84 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  54. Schreiber, T.: Variance asymptotics and central limit theorems for volumes of unions of random closed sets. Adv. Appl. Probab. 34, 520–539 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Schreiber, T.: Asymptotic geometry of high density smooth-grained Boolean models in bounded domains. Adv. Appl. Probab. 35, 913–936 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schreiber, T., Yukich, J.E.: Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points. Ann. Probab. 36, 363–396 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shepp, L.: Covering the circle with random arcs. Israel J. Math. 11, 328–345 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  58. Siegel, A.F., Holst, L.: Covering the circle with random arcs of random sizes. J. Appl. Probab. 19, 373–381 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  59. Stevens, W.L.: Solution to a geometrical problem in probability. Ann. Eugenics 9, 315–320 (1939)

    Article  MathSciNet  Google Scholar 

  60. Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  61. Vu, V.: Sharp concentration of random polytopes. Geom. Funct. Anal. 15, 1284–1318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. van de Weygaert, R.: Fragmenting the universe III. The construction and statistics of 3-D Voronoi tessellations. Astron. Astrophys. 283, 361–406 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Calka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Calka, P. (2013). Asymptotic Methods for Random Tessellations. In: Spodarev, E. (eds) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol 2068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33305-7_6

Download citation

Publish with us

Policies and ethics