Advertisement

Asymptotic Methods for Random Tessellations

  • Pierre CalkaEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2068)

Abstract

In this chapter, we are interested in two classical examples of random tessellations which are the Poisson hyperplane tessellation and Poisson–Voronoi tessellation. The first section introduces the main definitions, the application of an ergodic theorem and the construction of the so-called typical cell as the natural object for a statistical study of the tessellation. We investigate a few asymptotic properties of the typical cell by estimating the distribution tails of some of its geometric characteristics (inradius, volume, fundamental frequency). In the second section, we focus on the particular situation where the inradius of the typical cell is large. We start with precise distributional properties of the circumscribed radius that we use afterwards to provide quantitative information about the closeness of the cell to a ball. We conclude with limit theorems for the number of hyperfaces when the inradius goes to infinity.

Keywords

Convex Hull Extreme Point Poisson Point Process Voronoi Tessellation Distribution Tail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 20.
    Avram, F., Bertsimas, D.: On central limit theorems in geometrical probability. Ann. Appl. Probab. 3, 1033–1046 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 21.
    Baccelli, F., Blaszczyszyn, B.: Stochastic Geometry and Wireless Networks. Now Publishers, Delft (2009)Google Scholar
  3. 40.
    Bandle, C.: Isoperimetric inequalities and applications. Monographs and Studies in Mathematics, vol. 7. Pitman (Advanced Publishing Program), Boston (1980)Google Scholar
  4. 48.
    Bárány, I., Reitzner, M.: On the variance of random polytopes. Adv. Math. 225, 1986–2001 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 49.
    Bárány, I., Reitzner, M.: Poisson polytopes. Ann. Probab. 38, 1507–1531 (2010)zbMATHCrossRefGoogle Scholar
  6. 80.
    Bowman, F.: Introduction to Bessel functions. Dover, New York (1958)zbMATHGoogle Scholar
  7. 103.
    Bürgisser, P., Cucker, F., Lotz, M.: Coverage processes on spheres and condition numbers for linear programming. Ann. Probab. 38, 570–604 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 106.
    Calka, P.: Mosaïques Poissoniennes de l’espace Euclidian. Une extension d’un résultat de R. E. Miles. C. R. Math. Acad. Sci. Paris 332, 557–562 (2001)MathSciNetzbMATHGoogle Scholar
  9. 107.
    Calka, P.: The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. 34, 702–717 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 108.
    Calka, P.: Tessellations. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry. Oxford Univerxity Press, London (2010)Google Scholar
  11. 109.
    Calka, P., Schreiber, T.: Limit theorems for the typical Poisson-Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33, 1625–1642 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 110.
    Calka, P., Schreiber, T.: Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. Appl. Probab. 38, 47–58 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 111.
    Calka, P., Schreiber, T., Yukich, J.E.: Brownian limits, local limits and variance asymptotics for convex hulls in the ball. Ann. Probab. (2012) (to appear)Google Scholar
  14. 132.
    Cowan, R.: The use of the ergodic theorems in random geometry. Adv. in Appl. Prob. 10 (suppl.), 47–57 (1978)Google Scholar
  15. 133.
    Cowan, R.: Properties of ergodic random mosaic processes. Math. Nachr. 97, 89–102 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 162.
    Dryden, I.L., Farnoosh, R., Taylor, C.C.: Image segmentation using Voronoi polygons and MCMC, with application to muscle fibre images. J. Appl. Stat. 33, 609–622 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 172.
    Feller, W.: An Introduction to Probability Theory and its Applications. Wiley, New York (1971)zbMATHGoogle Scholar
  18. 173.
    Fleischer, F., Gloaguen, C., Schmidt, H., Schmidt, V., Schweiggert, F.: Simulation algorithm of typical modulated Poisson–Voronoi cells and application to telecommunication network modelling. Jpn. J. Indust. Appl. Math. 25, 305–330 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 176.
    Foss, S., Zuyev, S.: On a Voronoi aggregative process related to a bivariate Poisson process. Adv. Appl. Probab. 28, 965–981 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 185.
    Gerstein, M., Tsai, J., Levitt, M.: The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J. Mol. Biol. 249, 955–966 (1995)CrossRefGoogle Scholar
  21. 187.
    Gilbert, E.N.: Random subdivisions of space into crystals. Ann. Math. Stat. 33, 958–972 (1962)zbMATHCrossRefGoogle Scholar
  22. 188.
    Gilbert, E.N.: The probability of covering a sphere with n circular caps. Biometrika 52, 323–330 (1965)MathSciNetzbMATHGoogle Scholar
  23. 196.
    Goldman, A.: Le spectre de certaines mosaïques Poissoniennes du plan et l’enveloppe convexe du pont Brownien. Probab. Theor. Relat. Fields 105, 57–83 (1996)zbMATHCrossRefGoogle Scholar
  24. 197.
    Goldman, A.: Sur une conjecture de D. G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne. Ann. Probab. 26, 1727–1750 (1998)zbMATHGoogle Scholar
  25. 198.
    Goldman, A., Calka, P.: On the spectral function of the Poisson-Voronoi cells. Ann. Inst. H. Poincaré Probab. Stat. 39, 1057–1082 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 200.
    Goudsmit, S.: Random distribution of lines in a plane. Rev. Mod. Phys. 17, 321–322 (1945)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 222.
    Hall, P.: On the coverage of k-dimensional space by k-dimensional spheres. Ann. Probab. 13, 991–1002 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 239.
    Heinrich, L., Schmidt, H., Schmidt, V.: Central limit theorems for Poisson hyperplane tessellations. Ann. Appl. Probab. 16, 919–950 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 252.
    Hug, D.: Random mosaics. In: Baddeley, A.J., Bárány, I., Schneider, R., Weil, W. (eds.) Stochastic Geometry - Lecture Notes in Mathematics, vol. 1892. Springer, Berlin (2007)Google Scholar
  30. 255.
    Hug, D., Reitzner, M., Schneider, R.: Large Poisson–Voronoi cells and Crofton cells. Adv. Appl. Probab. 36, 667–690 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 256.
    Hug, D., Reitzner, M., Schneider, R.: The limit shape of the zero cell in a stationary Poisson hyperplane tessellation. Ann. Probab. 32, 1140–1167 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 259.
    Hug, D., Schneider, R.: Asymptotic shapes of large cells in random tessellations. Geom. Funct. Anal. 17, 156–191 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 279.
    Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966)zbMATHCrossRefGoogle Scholar
  34. 312.
    Kovalenko, I.N.: A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons. J. Appl. Math. Stoch. Anal. 12, 301–310 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 323.
    Last, G.: Stationary partitions and Palm probabilities. Adv. Appl. Probab. 38, 602–620 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 324.
    Lautensack, C., Zuyev, S.: Random Laguerre tessellations. Adv. Appl. Probab. 40, 630–650 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 340.
    Maier, R., Schmidt, V.: Stationary iterated tessellations. Adv. Appl. Probab. 35, 337–353 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 348.
    Mecke, J.: Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 9, 36–58 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 352.
    Mecke, J.: On the relationship between the 0-cell and the typical cell of a stationary random tessellation. Pattern Recogn. 32, 1645–1648 (1999)CrossRefGoogle Scholar
  40. 356.
    Miles, R.E.: Random polygons determined by random lines in a plane. Proc. Natl. Acad. Sci. USA 52, 901–907 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 357.
    Miles, R.E.: Random polygons determined by random lines in a plane II. Proc. Natl. Acad. Sci. USA 52, 1157–1160 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 359.
    Miles, R.E.: The various aggregates of random polygons determined by random lines in a plane. Adv. Math. 10, 256–290 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 367.
    Møller, J.: Random Johnson-Mehl tessellations. Adv. Appl. Probab. 24, 814–844 (1992)CrossRefGoogle Scholar
  44. 368.
    Møller, J.: Lectures on random Voronoi tessellations. In: Lecture Notes in Statistics, vol. 87. Springer, New York (1994)Google Scholar
  45. 374.
    Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Chichester (2002)zbMATHGoogle Scholar
  46. 375.
    Nagaev, A.V.: Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain. Ann. Inst. Stat. Math. 47, 21–29 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 376.
    Nagel, W., Weiss, V.: Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration. Adv. Appl. Probab. 37, 859–883 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 386.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. With a foreword by D. G. Kendall. Wiley, Chichester (2000)zbMATHCrossRefGoogle Scholar
  49. 389.
    Paroux, K.: Quelques théorèmes centraux limites pour les processus Poissoniens de droites dans le plan. Adv. Appl. Probab. 30, 640–656 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 418.
    Reitzner, M.: Random polytopes and the Efron-Stein jackknife inequality. Ann. Probab. 31, 2136–2166 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 419.
    Reitzner, M.: Central limit theorems for random polytopes. Probab. Theor. Relat. Fields 133, 483–507 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 421.
    Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 2, 75–84 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 451.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  54. 455.
    Schreiber, T.: Variance asymptotics and central limit theorems for volumes of unions of random closed sets. Adv. Appl. Probab. 34, 520–539 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 456.
    Schreiber, T.: Asymptotic geometry of high density smooth-grained Boolean models in bounded domains. Adv. Appl. Probab. 35, 913–936 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 459.
    Schreiber, T., Yukich, J.E.: Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points. Ann. Probab. 36, 363–396 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 470.
    Shepp, L.: Covering the circle with random arcs. Israel J. Math. 11, 328–345 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 475.
    Siegel, A.F., Holst, L.: Covering the circle with random arcs of random sizes. J. Appl. Probab. 19, 373–381 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 485.
    Stevens, W.L.: Solution to a geometrical problem in probability. Ann. Eugenics 9, 315–320 (1939)MathSciNetCrossRefGoogle Scholar
  60. 489.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  61. 502.
    Vu, V.: Sharp concentration of random polytopes. Geom. Funct. Anal. 15, 1284–1318 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 514.
    van de Weygaert, R.: Fragmenting the universe III. The construction and statistics of 3-D Voronoi tessellations. Astron. Astrophys. 283, 361–406 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Université de RouenRouenFrance

Personalised recommendations