Advertisement

Random Tessellations and Cox Processes

  • Florian Voss
  • Catherine Gloaguen
  • Volker SchmidtEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2068)

Abstract

We consider random tessellations T in \({\mathbb{R}}^{2}\) and Cox point processes whose driving measure is concentrated on the edges of T. In particular, we discuss several classes of Poisson-type tessellations which can describe for example the infrastructure of telecommunication networks, whereas the Cox processes on their edges can describe the locations of network components. An important quantity associated with stationary point processes is their typical Voronoi cell Z. Since the distribution of Z is usually unknown, we discuss algorithms for its Monte Carlo simulation. They are used to compute the distribution of the typical Euclidean (i.e. direct) connection length D o between pairs of network components. We show that D o converges in distribution to a Weibull distribution if the network is scaled and network components are simultaneously thinned in an appropriate way. We also consider the typical shortest path length C o to connect network components along the edges of the underlying tessellation. In particular, we explain how scaling limits and analytical approximation formulae can be derived for the distribution of C o .

Keywords

Point Process Voronoi Cell Voronoi Tessellation Marked Point Process Delaunay Tessellation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 21.
    Baccelli, F., Blaszczyszyn, B.: Stochastic Geometry and Wireless Networks. Now Publishers, Delft (2009)Google Scholar
  2. 133.
    Cowan, R.: Properties of ergodic random mosaic processes. Math. Nachr. 97, 89–102 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 140.
    Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. I and II. Probab. Appl. (New York). Springer, New York (2003/2008)Google Scholar
  4. 173.
    Fleischer, F., Gloaguen, C., Schmidt, H., Schmidt, V., Schweiggert, F.: Simulation algorithm of typical modulated Poisson–Voronoi cells and application to telecommunication network modelling. Jpn. J. Indust. Appl. Math. 25, 305–330 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 174.
    Fleischer, F., Gloaguen, C., Schmidt, V., Voss, F.: Simulation of the typical Poisson-Voronoi-Cox-Voronoi cell. J. Stat. Comput. Simul. 79, 939–957 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 189.
    Gloaguen, C., Fleischer, F., Schmidt, H., Schmidt, V.: Simulation of typical Cox-Voronoi cells with a special regard to implementation tests. Math. Meth. Oper. Res. 62, 357–373 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 190.
    Gloaguen, C., Voss, F., Schmidt, V.: Parametric distributions of connection lengths for the efficient analysis of fixed access networks. Ann. Telecommun. 66, 103–118 (2011)CrossRefGoogle Scholar
  8. 221.
    Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Area. Comm. 27, 1029–1046 (2009)CrossRefGoogle Scholar
  9. 282.
    Kallenberg, O.: Random Measures, 4th edn. Academic, New York (1986)Google Scholar
  10. 324.
    Lautensack, C., Zuyev, S.: Random Laguerre tessellations. Adv. Appl. Probab. 40, 630–650 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 339.
    Maier, R., Mayer, J., Schmidt, V.: Distributional properties of the typical cell of stationary iterated tessellations. Math. Meth. Oper. Res. 59, 287–302 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 346.
    Matthes, K., Kerstan, J., Mecke, J.: Infinitely Divisible Point Processes. Wiley, Chichester (1978)zbMATHGoogle Scholar
  13. 350.
    Mecke, J.: Parametric representation of mean values for stationary random mosaics. Math. Operationsforsch. Stat. Ser. Stat. 15, 437–442 (1984)MathSciNetzbMATHGoogle Scholar
  14. 377.
    Neveu, J.: Sur les mesures de Palm de deux processus ponctuels stationnaires. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 34, 199–203 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 451.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  16. 489.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  17. 491.
    Tchoumatchenko, K., Zuyev, S.: Aggregate and fractal tessellations. Probab. Theor. Relat. Fields 121, 198–218 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 498.
    Voss, F., Gloaguen, C., Fleischer, F., Schmidt, V.: Distributional properties of Euclidean distances in wireless networks involving road systems. IEEE J. Sel. Area. Comm. 27, 1047–1055 (2009)CrossRefGoogle Scholar
  19. 499.
    Voss, F., Gloaguen, C., Fleischer, F., Schmidt, V.: Densities of shortest path lengths in spatial stochastic networks. Stoch. Models 27, 141–167 (2011)MathSciNetCrossRefGoogle Scholar
  20. 500.
    Voss, F., Gloaguen, C., Schmidt, V.: Scaling limits for shortest path lengths along the edges of stationary tessellations. Adv. Appl. Prob. 42, 936–952 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 533.
    Zuyev, S.: Stochastic geometry and telecommunication networks. In: Kendall, W.S., Molchanov, I. (eds.) New Perspectives in Stochastic Geometry. Oxford University Press, London (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Florian Voss
    • 1
  • Catherine Gloaguen
    • 2
  • Volker Schmidt
    • 3
    Email author
  1. 1.Boehringer-Ingelheim Pharma GmbH & Co.IngelheimGermany
  2. 2.Orange LabsIssy les MoulineauxFrance
  3. 3.Ulm UniversityUlmGermany

Personalised recommendations