Asymptotic Methods in Statistics of Random Point Processes

  • Lothar HeinrichEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2068)


First we put together basic definitions and fundamental facts and results from the theory of (un)marked point processes defined on Euclidean spaces \({\mathbb{R}}^{d}\). We introduce the notion random marked point process together with the concept of Palm distributions in a rigorous way followed by the definitions of factorial moment and cumulant measures and characteristics related with them. In the second part we define a variety of estimators of second-order characteristics and other so-called summary statistics of stationary point processes based on observations on a “convex averaging sequence” of windows \(\{W_{n},\,n \in \mathbb{N}\}\). Although all these (mostly edge-corrected) estimators make sense for fixed bounded windows our main issue is to study their behaviour when W n grows unboundedly as n. The first problem of large-domain statistics is to find conditions ensuring strong or at least mean-square consistency as n under ergodicity or other mild mixing conditions put on the underlying point process. The third part contains weak convergence results obtained by exhausting strong mixing conditions or even m-dependence of spatial random fields generated by Poisson-based point processes. To illustrate the usefulness of asymptotic methods we give two Kolmogorov–Smirnov-type tests based on K-functions to check complete spatial randomness of a given point pattern in \({\mathbb{R}}^{d}\).


Point Process Point Pattern Boolean Model Factorial Moment Marked Point Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 22.
    Baddeley, A.: Fundamentals of point process statistics. In: Baddeley, A.J., Bárány, I., Schneider, R., Weil, W. (eds.) Stochastic Geometry - Lecture Notes in Mathematics, vol. 1892. Springer, Berlin (2007)Google Scholar
  2. 69.
    Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999)Google Scholar
  3. 74.
    Bolthausen, E.: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10, 1047–1050 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 83.
    Bradley, R.C.: Introduction to Strong Mixing Conditions. Vol. 1, 2, 3. Kendrick Press, Heber City (2007)Google Scholar
  5. 102.
    Bulinski, A.V., Shiryaev, A.N.: Theory of Stochastic Processes. FIZMATLIT, Moscow (2005) (in Russian)Google Scholar
  6. 140.
    Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. I and II. Probab. Appl. (New York). Springer, New York (2003/2008)Google Scholar
  7. 146.
    Davydov, Y.A.: Convergence of distributions generated by stationary stochastic processes. Theor. Probab. Appl. 13, 691–696 (1968)zbMATHCrossRefGoogle Scholar
  8. 199.
    Götze, F., Hipp, C.: Asymptotic expansions for potential functions of i.i.d. random fields. Probab. Theor. Relat. Fields 82, 349–370 (1989)zbMATHCrossRefGoogle Scholar
  9. 226.
    Heinrich, L.: Asymptotic expansions in the central limit theorem for a special class of m-dependent random fields. I/II. Math. Nachr. 134, 83–106 (1987); 145, 309–327 (1990)Google Scholar
  10. 227.
    Heinrich, L.: Asymptotic Gaussianity of some estimators for reduced factorial moment measures and product densities of stationary Poisson cluster processes. Statistics 19, 87–106 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 228.
    Heinrich, L.: Goodness-of-fit tests for the second moment function of a stationary multidimensional Poisson process. Statistics 22, 245–268 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 229.
    Heinrich, L.: On existence and mixing properties of germ-grain models. Statistics 23, 271–286 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 230.
    Heinrich, L.: Normal approximation for some mean-value estimates of absolutely regular tessellations. Math. Meth. Stat. 3, 1–24 (1994)MathSciNetzbMATHGoogle Scholar
  14. 231.
    Heinrich, L.: Gaussian limits of multiparameter empirical K-functions of spatial Poisson processes (submitted) (2012)Google Scholar
  15. 232.
    Heinrich, L., Klein, S.: Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes. Stat. Risk Model. 28, 359–387 (2011)MathSciNetzbMATHGoogle Scholar
  16. 233.
    Heinrich, L., Klein, S., Moser, M.: Empirical mark covariance and product density function of stationary marked point processes - A survey on asymptotic results. Meth. Comput. Appl. Probab. (2012), online available via DOI 10.1007/s11009-012-9314-7Google Scholar
  17. 234.
    Heinrich, L., Liebscher, E.: Strong convergence of kernel estimators for product densities of absolutely regular point processes. J. Nonparametr. Stat. 8, 65–96 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 235.
    Heinrich, L., Lück, S., Schmidt, V.: Asymptotic goodness-of-fit tests for the Palm mark distribution of stationary point processes with correlated marks. Submitted (2012). An extended version is available at
  19. 236.
    Heinrich, L., Molchanov, I.S.: Central limit theorem for a class of random measures associated with germ-grain models. Adv. Appl. Probab. 31, 283–314 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 237.
    Heinrich, L., Pawlas, Z.: Weak and strong convergence of empirical distribution functions from germ-grain processes. Statistics 42, 49–65 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 238.
    Heinrich, L., Prokešová, M.: On estimating the asymptotic variance of stationary point processes. Meth. Comput. Appl. Probab. 12, 451–471 (2010)zbMATHCrossRefGoogle Scholar
  22. 265.
    Illian, J., Penttinen, A., Stoyan, D., Stoyan, H.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, Chichester (2008)zbMATHGoogle Scholar
  23. 267.
    Ivanoff, G.: Central limit theorems for point processes. Stoch. Process. Appl. 12, 171–186 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 274.
    Jolivet, E.: Central limit theorem and convergence of empirical processes for stationary point processes. In: Bartfai, P., Tomko, J. (eds.) Point Processes and Queueing Problems. North-Holland, Amsterdam (1980)Google Scholar
  25. 275.
    Jolivet, E.: Upper bound of the speed of convergence of moment density estimators for stationary point processes. Metrika 31, 349–360 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 289.
    Karr, A.F.: Point Processes and their Statistical Inference. Dekker, New York (1986)zbMATHGoogle Scholar
  27. 346.
    Matthes, K., Kerstan, J., Mecke, J.: Infinitely Divisible Point Processes. Wiley, Chichester (1978)zbMATHGoogle Scholar
  28. 366.
    Molchanov, I.S.: Statistics of the Boolean Model for Practitioners and Mathematicians. Wiley, Chichester (1997)zbMATHGoogle Scholar
  29. 382.
    Nguyen, X.X., Zessin, H.: Punktprozesse mit Wechselwirkung. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 37, 91–126 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 385.
    Ohser, J., Stoyan, D.: On the second-order and orientation analysis of planar stationary point processes. Biom. J. 23, 523–533 (1981)MathSciNetCrossRefGoogle Scholar
  31. 392.
    Pawlas, Z.: Empirical distributions in marked point processes. Stoch. Process. Appl. 119, 4194–4209 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 423.
    Rio, E.: Covariance inequality for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Stat. 29, 587–597 (1993)MathSciNetzbMATHGoogle Scholar
  33. 424.
    Ripley, B.D.: The second-order analysis of stationary point processes. J. Appl. Probab. 13, 255–266 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 438.
    Schlather, M.: On the second-order characteristics of marked point processes. Bernoulli 7, 99–117 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 488.
    Stoyan, D.: Fundamentals of point process statistics. In: Baddeley, A., Gregori, P., Mateu, J., Stoica, R., Stoyan, D. (eds.) Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics, vol. 185. Springer, New York (2006)Google Scholar
  36. 489.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  37. 519.
    Wills, J.M.: Zum Verhältnis von Volumen und Oberfläche bei konvexen Körpern. Archiv der Mathematik 21, 557–560 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 522.
    Yoshihara, K.: Limiting behavior of U-statistics for stationary, absolutely regular processes. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 35, 237–252 (1976)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Augsburg UniversityAugsburgGermany

Personalised recommendations