Advertisement

Spatial Point Patterns: Models and Statistics

  • Adrian BaddeleyEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2068)

Abstract

This chapter gives a brief introduction to spatial point processes, with a view to applications. The three sections focus on the construction of point process models, the simulation of point processes, and statistical inference. For further background, we recommend [Daley et al., Probability and its applications (New York). Springer, New York, 2003/2008; Diggle, Statistical analysis of spatial point patterns, 2nd edn. Hodder Arnold, London, 2003; Illian et al., Statistical analysis and modelling of spatial point patterns. Wiley, Chichester, 2008; Møller et al., Statistical inference and simulation for spatial point processes. Chapman & Hall, Boca Raton, 2004].

Keywords

Poisson Process Point Process Point Pattern Conditional Intensity Homogeneous Poisson Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.
    Agterberg, F.P.: Automatic contouring of geological maps to detect target areas for mineral exploration. J. Int. Ass. Math. Geol.6, 373–395 (1974)CrossRefGoogle Scholar
  2. 11.
    Ambartzumian, R.V.: On an equation for stationary point processes. Dokl. Akad. Nauk Armjanskoi SSR 42, 141–147 (1966)Google Scholar
  3. 23.
    Baddeley, A.: Analysing spatial point patterns in R. Tech.rep., CSIRO Mathematics, Informatics and Statistics (2008).www.csiro.au/resources/pf16h.html
  4. 25.
    Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R., Turner, R.: Spatial logistic regression and change-of-support for Poisson point processes. Electron. J. Stat.4, 1151–1201 (2010).doi: 10.1214/10-EJS581MathSciNetCrossRefGoogle Scholar
  5. 26.
    Baddeley, A., Turner, R.: Practical maximum pseudolikelihood for spatial point patterns (with discussion). Aust. N. Z. J. Stat.42, 283–322 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 27.
    Baddeley, A., Turner, R.: Spatstat: an R package for analyzing spatial point patterns. J. Stat. Software 12, 1–142 (2005).www.jstatsoft.org
  7. 29.
    Baddeley, A.J.: Time-invariance estimating equations. Bernoulli 6, 783–808 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 32.
    Baddeley, A.J., van Lieshout, M.N.M.: Area-interaction point processes. Ann. Inst. Stat. Math.47, 601–619 (1995)zbMATHCrossRefGoogle Scholar
  9. 64.
    Berman, M., Turner, T.R.: Approximating point process likelihoods with GLIM. Appl. Stat.41, 31–38 (1992)zbMATHCrossRefGoogle Scholar
  10. 65.
    Besag, J.: Statistical analysis of non-lattice data. The Statistician 24, 179–195 (1975)CrossRefGoogle Scholar
  11. 66.
    Besag, J.: Some methods of statistical analysis for spatial data. Bull. Int. Stat. Inst.44, 77–92 (1978)Google Scholar
  12. 82.
    Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat.29, 610–611 (1958)zbMATHCrossRefGoogle Scholar
  13. 86.
    Brix, A., Kendall, W.S.: Simulation of cluster point processes without edge effects. Adv. Appl. Prob.34, 267–280 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 127.
    Clyde, M., Strauss, D.: Logistic regression for spatial pair-potential models. In: Possolo, A.(ed.) Spatial Statistics and Imaging. IMS Lecture Notes Monograph Series, vol. 20, chap. II, pp.14–30. Institute of Mathematical Statistics, Hayward, California (1991)Google Scholar
  15. 134.
    Cox, D.R., Hinkley, D.V.: Theoretical Statistics.Chapman & Hall, London (1974)zbMATHGoogle Scholar
  16. 140.
    Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. I and II. Probab. Appl.(New York). Springer, New York (2003/2008)Google Scholar
  17. 152.
    Diggle, P.J.: On parameter estimation and goodness-of-fit testing for spatial point patterns. Biometrika 35, 87–101 (1979)zbMATHGoogle Scholar
  18. 153.
    Diggle, P.J.: A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point. J. Roy. Stat. Soc. Ser. A 153, 349–362 (1990)CrossRefGoogle Scholar
  19. 154.
    Diggle, P.J.: Statistical Analysis of Spatial Point Patterns, 2nd edn. Hodder Arnold, London (2003)zbMATHGoogle Scholar
  20. 161.
    Drinkwater, M.J., Parker, Q.A., Proust, D., Slezak, E., Quintana, H.: The large scale distribution of galaxies in the Shapley supercluster. Publ. Astron. Soc. Aust.21, 89–96 (2004).doi:10.1071/AS03057CrossRefGoogle Scholar
  21. 168.
    Ethier, S.N., Kurtz, T.G.: Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)Google Scholar
  22. 180.
    Gelfand, A.E., Diggle, P.J., Fuentes, M., Guttorp, P.: Handbook of Spatial Statistics. CRC, Boca Raton (2010)zbMATHCrossRefGoogle Scholar
  23. 183.
    Georgii, H.O.: Canonical and grand canonical Gibbs states for continuum systems. Comm. Math. Phys.48, 31–51 (1976)MathSciNetCrossRefGoogle Scholar
  24. 186.
    Geyer, C.J.: Likelihood inference for spatial point processes. In: Barndorff-Nielsen, O. E., Kendall, W.S., van Lieshout, M.N.M.(eds.) Stochastic Geometry: Likelihood and Computation. Monographs on Statistics and Applied Probability, vol.80, chap. 3, pp.79–140. Chapman & Hall, Boca Raton (1999)Google Scholar
  25. 203.
    Grimmett, G.R., Stirzaker, D.R.: Probability and random processes. Oxford University Press, London (1982)zbMATHGoogle Scholar
  26. 265.
    Illian, J., Penttinen, A., Stoyan, D., Stoyan, H.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, Chichester (2008)zbMATHGoogle Scholar
  27. 281.
    Kallenberg, O.: An informal guide to the theory of conditioning in point processes. Int. Stat. Rev.52, 151–164 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 290.
    Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. No. 1 in Fundamentals of Algorithms. SIAM, Philadelphia (2003)Google Scholar
  29. 291.
    Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Chichester (1979)zbMATHGoogle Scholar
  30. 317.
    Kutoyants, Y.A.: Statistical Inference for Spatial Poisson Processes. No.134 in Lecture Notes in Statistics. Springer, New York (1998)Google Scholar
  31. 349.
    Mecke, J.: Eine charakteristische Eigenschaft der doppelt Poissonschen Prozesse. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 11, 74–81 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 355.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys.21, 1087–1092 (1953)CrossRefGoogle Scholar
  33. 358.
    Miles, R.E.: On the homogeneous planar Poisson point process. Math. Biosci, 6, 85–127 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 369.
    Møller, J., Waagepetersen, R.P.: Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall, Boca Raton (2004)Google Scholar
  35. 370.
    Møller, J., Zuyev, S.: Gamma-type results and other related properties of Poisson processes. Adv. Appl. Probab.28, 662–673 (1996)CrossRefGoogle Scholar
  36. 383.
    Nguyen, X.X., Zessin, H.: Integral and differential characterizations of the Gibbs process. Math. Nachr.88, 105–115 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 406.
    Pfanzagl, J.: On the measurability and consistency of minimum contrast estimates. Metrika 14, 249–276 (1969)zbMATHCrossRefGoogle Scholar
  38. 489.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  39. 507.
    Watkins, K.P., Hickman, A.H.: Geological evolution and mineralization of the Murchison Province, Western Australia. Bulletin 137, Geological Survey of Western Australia (1990). Published by Department of Mines, Western Australia. Available online from Department of Industry and Resources, State Government of Western Australia.www.doir.wa.gov.au
  40. 516.
    Widom, B., Rowlinson, J.S.: New model for the study of liquid-vapor phase transitions. J. Chem. Phys.52, 1670–1684 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.CSIROPerthAustralia

Personalised recommendations