Advertisement

Introduction into Integral Geometry and Stereology

  • Markus KiderlenEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2068)

Abstract

This chapter is a self-contained introduction into integral geometry and its applications in stereology. The most important integral geometric tools for stereological applications are kinematic formulae and results of Blaschke–Petkantschin type. Therefore, Crofton’s formula and the principal kinematic formula for polyconvex sets are stated and shown using Hadwiger’s characterization of the intrinsic volumes. Then, the linear Blaschke–Petkantschin formula is proved together with certain variants for flats containing a given direction (vertical flats) or contained in an isotropic subspace. The proofs are exclusively based on invariance arguments and an axiomatic description of the intrinsic volumes. These tools are then applied in model-based stereology leading to unbiased estimators of specific intrinsic volumes of stationary random sets from observations in a compact window or a lower dimensional flat. Also, Miles-formulae for stationary and isotropic Boolean models with convex particles are derived. In design-based stereology, Crofton’s formula leads to unbiased estimators of intrinsic volumes from isotropic uniform random flats. To estimate the Euler characteristic, which cannot be estimated using Crofton’s formula, the disector design is presented. Finally we discuss design-unbiased estimation of intrinsic volumes from vertical and from isotropic sections.

Keywords

Convex Body Unbiased Estimator Invariant Probability Measure Intrinsic Volume Positive Reach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 19.
    Auneau, J., Jensen, E.B.V.: Expressing intrinsic volumes as rotational integrals. Adv. Appl. Math. 45, 1–11 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 24.
    Baddeley, A., Bárány, I., Schneider, R., Weil, W.: Stochastic Geometry. Springer, Heidelberg (2004)Google Scholar
  3. 28.
    Baddeley, A.J.: Vertical sections. In: Weil, W., Ambartzumian, R.V. (eds.) Stochastic Geometry and Stereology (Oberwolfach 1983). Teubner, Berlin (1983)Google Scholar
  4. 30.
    Baddeley, A.J., Gundersen, H.J.G., Cruz-Orive, L.M.: Estimation of surface area from vertical sections. J. Microsc. 142, 259–276 (1986)CrossRefGoogle Scholar
  5. 31.
    Baddeley, A.J., Jensen, E.B.V.: Stereology for Statisticians. Chapman & Hall, Boca Raton (2005)Google Scholar
  6. 137.
    Cruz-Orive, L.M.: A new stereological principle for test lines in threedimensional space. J. Microsc. 219, 18–28 (2005)MathSciNetCrossRefGoogle Scholar
  7. 140.
    Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. I and II. Probab. Appl. (New York). Springer, New York (2003/2008)Google Scholar
  8. 141.
    Davy, P.J.: Stereology: A Statistical Viewpoint. Ph.D. thesis, Australian National University (1978)Google Scholar
  9. 142.
    Davy, P.J., Miles, R.E.: Sampling theory for opaque spatial specimens. J. R. Stat. Soc. Ser. B Stat. Meth. 39, 56–65 (1977)MathSciNetzbMATHGoogle Scholar
  10. 171.
    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 205.
    Groemer, H.: On the extension of additive functionals on classes of convex sets. Pac. J. Math. 75, 397–410 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 208.
    Gual-Arnau, X., Cruz-Orive, L.M.: A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications. Differ. Geom. Appl. 27, 124–128 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 220.
    Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)CrossRefzbMATHGoogle Scholar
  14. 301.
    Klain, D.A.: A short proof of hadwiger’s characterization theorem. Mathematika 42, 329–339 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 302.
    Klain, D.A., Rota, G.C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  16. 360.
    Miles, R.E.: Some integral geometric formula, with stochastic applications. J. Appl. Probab. 16, 592–606 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 361.
    Miles, R.E., Davy, P.J.: Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae. J. Microsc. 107, 211–226 (1976)CrossRefGoogle Scholar
  18. 404.
    Petkantschin, B.: Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im n-dimensionalen Raum. Abf. Math. Sem. Univ. Hamburg 11, 249–310 (1936)CrossRefGoogle Scholar
  19. 426.
    Rother, W., Zähle, M.: A short proof of the principal kinematic formula and extensions. Trans. Am. Math. Soc. 321, 547–558 (1990)zbMATHGoogle Scholar
  20. 433.
    Santaló, L.A.: Integral Geometry and Geometric Probability. Addison-Wesley, Reading (1976)zbMATHGoogle Scholar
  21. 450.
    Schneider, R., Weil, W.: Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129, 67–80 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 451.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  23. 484.
    Sterio, D.C.: The unbiased estimation of number and sizes of aritrary particles using the disector. J. Microsc. 134, 127–136 (1984)CrossRefGoogle Scholar
  24. 489.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)zbMATHGoogle Scholar
  25. 509.
    Weil, W.: Densities of quermassintegrals for stationary random sets. In: Ambartzumian, R.V., Weil, W. (eds.) Stochastic Geometry, Geometric Statistics, Stereology (Proc. Conf. Oberwolfach, 1983). Teubner, Leipzig (1984)Google Scholar
  26. 510.
    Weil, W.: Densities of mixed volumes for Boolean models. Adv. Appl. Prob. 33, 39–60 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 511.
    Weil, W.: Mixed measures and functionals of translative integral geometry. Math. Nachr. 223, 161–184 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 512.
    Weil, W., Wieacker, J.A.: Densities for stationary random sets and point processes. Adv. Appl. Prob. 16, 324–346 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 527.
    Zähle, M.: Curvature measures and random sets I. Math. Nachr. 119, 327–339 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Aarhus UniversityAarhusDenmark

Personalised recommendations