Skip to main content

Introduction into Integral Geometry and Stereology

  • Chapter
  • First Online:
Stochastic Geometry, Spatial Statistics and Random Fields

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2068))

Abstract

This chapter is a self-contained introduction into integral geometry and its applications in stereology. The most important integral geometric tools for stereological applications are kinematic formulae and results of Blaschke–Petkantschin type. Therefore, Crofton’s formula and the principal kinematic formula for polyconvex sets are stated and shown using Hadwiger’s characterization of the intrinsic volumes. Then, the linear Blaschke–Petkantschin formula is proved together with certain variants for flats containing a given direction (vertical flats) or contained in an isotropic subspace. The proofs are exclusively based on invariance arguments and an axiomatic description of the intrinsic volumes. These tools are then applied in model-based stereology leading to unbiased estimators of specific intrinsic volumes of stationary random sets from observations in a compact window or a lower dimensional flat. Also, Miles-formulae for stationary and isotropic Boolean models with convex particles are derived. In design-based stereology, Crofton’s formula leads to unbiased estimators of intrinsic volumes from isotropic uniform random flats. To estimate the Euler characteristic, which cannot be estimated using Crofton’s formula, the disector design is presented. Finally we discuss design-unbiased estimation of intrinsic volumes from vertical and from isotropic sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auneau, J., Jensen, E.B.V.: Expressing intrinsic volumes as rotational integrals. Adv. Appl. Math. 45, 1–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baddeley, A., Bárány, I., Schneider, R., Weil, W.: Stochastic Geometry. Springer, Heidelberg (2004)

    Google Scholar 

  3. Baddeley, A.J.: Vertical sections. In: Weil, W., Ambartzumian, R.V. (eds.) Stochastic Geometry and Stereology (Oberwolfach 1983). Teubner, Berlin (1983)

    Google Scholar 

  4. Baddeley, A.J., Gundersen, H.J.G., Cruz-Orive, L.M.: Estimation of surface area from vertical sections. J. Microsc. 142, 259–276 (1986)

    Article  Google Scholar 

  5. Baddeley, A.J., Jensen, E.B.V.: Stereology for Statisticians. Chapman & Hall, Boca Raton (2005)

    Google Scholar 

  6. Cruz-Orive, L.M.: A new stereological principle for test lines in threedimensional space. J. Microsc. 219, 18–28 (2005)

    Article  MathSciNet  Google Scholar 

  7. Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. I and II. Probab. Appl. (New York). Springer, New York (2003/2008)

    Google Scholar 

  8. Davy, P.J.: Stereology: A Statistical Viewpoint. Ph.D. thesis, Australian National University (1978)

    Google Scholar 

  9. Davy, P.J., Miles, R.E.: Sampling theory for opaque spatial specimens. J. R. Stat. Soc. Ser. B Stat. Meth. 39, 56–65 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Groemer, H.: On the extension of additive functionals on classes of convex sets. Pac. J. Math. 75, 397–410 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gual-Arnau, X., Cruz-Orive, L.M.: A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications. Differ. Geom. Appl. 27, 124–128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)

    Book  MATH  Google Scholar 

  14. Klain, D.A.: A short proof of hadwiger’s characterization theorem. Mathematika 42, 329–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klain, D.A., Rota, G.C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Miles, R.E.: Some integral geometric formula, with stochastic applications. J. Appl. Probab. 16, 592–606 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miles, R.E., Davy, P.J.: Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae. J. Microsc. 107, 211–226 (1976)

    Article  Google Scholar 

  18. Petkantschin, B.: Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im n-dimensionalen Raum. Abf. Math. Sem. Univ. Hamburg 11, 249–310 (1936)

    Article  Google Scholar 

  19. Rother, W., Zähle, M.: A short proof of the principal kinematic formula and extensions. Trans. Am. Math. Soc. 321, 547–558 (1990)

    MATH  Google Scholar 

  20. Santaló, L.A.: Integral Geometry and Geometric Probability. Addison-Wesley, Reading (1976)

    MATH  Google Scholar 

  21. Schneider, R., Weil, W.: Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129, 67–80 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  23. Sterio, D.C.: The unbiased estimation of number and sizes of aritrary particles using the disector. J. Microsc. 134, 127–136 (1984)

    Article  Google Scholar 

  24. Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  25. Weil, W.: Densities of quermassintegrals for stationary random sets. In: Ambartzumian, R.V., Weil, W. (eds.) Stochastic Geometry, Geometric Statistics, Stereology (Proc. Conf. Oberwolfach, 1983). Teubner, Leipzig (1984)

    Google Scholar 

  26. Weil, W.: Densities of mixed volumes for Boolean models. Adv. Appl. Prob. 33, 39–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weil, W.: Mixed measures and functionals of translative integral geometry. Math. Nachr. 223, 161–184 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weil, W., Wieacker, J.A.: Densities for stationary random sets and point processes. Adv. Appl. Prob. 16, 324–346 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zähle, M.: Curvature measures and random sets I. Math. Nachr. 119, 327–339 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kiderlen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kiderlen, M. (2013). Introduction into Integral Geometry and Stereology. In: Spodarev, E. (eds) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol 2068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33305-7_2

Download citation

Publish with us

Policies and ethics