Advertisement

A Non Bayesian Predictive Approach for Functional Calibration

  • Noslen Hernández
  • Rolando J. Biscay
  • Isneri Talavera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

A non Bayesian predictive approach for statistical calibration with functional data is introduced. This is based on extending to the functional calibration setting the definition of non Bayesian predictive probability density proposed by Harris (1989). The new method is elaborated in detail in case of Gaussian functional linear models. It is shown through numerical simulations that the introduced non Bayesian predictive estimator of the unknown parameter of interest in calibration (commonly, a substance concentration) has negligible bias and compares favorably with the classical estimator, particularly in extrapolation problems. A further advantage of the new approach, which is also briefly illustrated, is that it provides not only point estimates but also a predictive likelihood function that allows the researcher to explore the plausibility of any possible parameter value.

Keywords

statistical calibration functional data analysis regression 

References

  1. 1.
    Osborne, C.: Statistical calibration: A review. Int. Stat. Rev. 59, 309–336 (1991)zbMATHCrossRefGoogle Scholar
  2. 2.
    Martens, H., Naes, T.: Multivariate calibration. Wiley, Chichester (1989)zbMATHGoogle Scholar
  3. 3.
    Brown, P.J.: Measurement, Regression, and Calibration. Clarendon Press, Oxford (1993)zbMATHGoogle Scholar
  4. 4.
    Massart, D.L., Vandeginste, B.G.M., Buydens, L., Jong, S.D., Lewi, P.J., Smeyers-Verbeke, J.: Handbook of Chemometrics and Qualimetrics: Part B. Elsevier Science B. V., The Netherlands (1997)Google Scholar
  5. 5.
    Lavine, B.K., Workman, J.: Fundamental reviews: Chemometrics. Anal. Chem. 74, 2763–2770 (2002)CrossRefGoogle Scholar
  6. 6.
    Walters, F.H., Rizzuto, G.T.: The calibration problem in statistics and its application to chemistry. Anal. Lett. 21, 2069–2076 (1988)CrossRefGoogle Scholar
  7. 7.
    Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics). Springer, New York (2006)zbMATHGoogle Scholar
  8. 8.
    Ramsay, J., Silverman, B.: Functional Data Analysis. Springer, Berlin (1997)zbMATHGoogle Scholar
  9. 9.
    Cuevas, A., Febrero, M., Fraiman, R.: Linear functional regression: the case of fixed design and functional response. The Canadian Joumal of Statistics 30, 285–300 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hagwood, C.: The calibration problem as an ill-posed inverse problem. J. Stat. Plan. Infer. 31, 179–185 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hernández, N., Biscay, R.J., Talavera, I.: A non-bayesian predictive approach for statistical calibration. Journal of Statistical Computation and Simulation 82, 529–545 (2012)CrossRefGoogle Scholar
  12. 12.
    Harris, I.R.: Predictive fit for natural exponential families. Biometrika 76, 675–684 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Grenander, U.: Abstract Inference. Wiley, New York (1981)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Noslen Hernández
    • 1
  • Rolando J. Biscay
    • 2
  • Isneri Talavera
    • 1
  1. 1.Advanced Technologies Application CenterCENATAVCuba
  2. 2.Universidad de ValparaísoChile

Personalised recommendations