Online Signature Verification Based on Legendre Series Representation. Consistency Analysis of Different Feature Combinations

  • Marianela Parodi
  • Juan Carlos Gómez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


In this paper, orthogonal polynomial series are used to approximate the time functions associated to the signatures and the coefficients in these series are used as features to model them. A novel consistency factor is proposed to quantify the discriminative power of different combinations of time functions related to the signing process. Pen coordinates, incremental variation of pen coordinates and pen pressure are analyzed for two different signature styles, namely, Western signatures and Chinese signatures from a publicly available Signature Database. Two state-of-the-art classifiers, namely, Support Vector Machines and Random Forests are used in the verification experiments. The obtained error rates are comparable to results reported over the same signature datasets in a recent signature verification competition.


Online Signature Verification Legendre Polynomials Consistency Factor 


  1. 1.
    Yeung, D.-Y., Chang, H., Xiong, Y., George, S.E., Kashi, R.S., Matsumoto, T., Rigoll, G.: SVC2004: First International Signature Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Lei, H., Govindaraju, V.: A Comparative Study on the Consistency of Features in On-line Signature Verification. Pattern Recogn. Lett. 147, 2483–2489 (2005)CrossRefGoogle Scholar
  3. 3.
    Kholmatov, A., Yanikoglu, B.: Identity Authentication Using Improved Online Signature Verification Method. Pattern Recogn. Lett. 26, 2400–2408 (2005)CrossRefGoogle Scholar
  4. 4.
    Muramatsu, D., Matsumoto, T.: Effectiveness of Pen Pressure, Azimuth, and Altitude Features for Online Signature Verification. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 503–512. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Golubitsky, O., Watt, S.M.: Distance-Based Classification of Handwritten Symbols. Int. Journal of Doc. Anal. and Recogn. 13, 133–146 (2010)CrossRefGoogle Scholar
  6. 6.
    Liwicki, M., Malik, M.I., den Heuvel, C.E., Chen, X., Berger, C., Stoel, R., Blumenstein, M., Found, B.: Signature Verification Competition for Online and Offline Skilled Forgeries (SigComp 2011). In: Int. Conf. on Doc. Anal. and Recogn. (2011)Google Scholar
  7. 7.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, NY (1995)zbMATHGoogle Scholar
  8. 8.
    Breiman, L.: Random Forests. Technical Report, Statistics Department, University of California, Berkeley (2001)Google Scholar
  9. 9.
    Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: Misc. Functions of the Department of Statistics (e1071). TU Wien (2010)Google Scholar
  10. 10.
    Brümmer, N., du Preez, J.: Application-Independent Evaluation of Speaker Detection. Comput. Speech and Lang. 20, 230–275 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marianela Parodi
    • 1
  • Juan Carlos Gómez
    • 1
  1. 1.Laboratory for System Dynamics and Signal Processing, FCEIAUniversidad Nacional de Rosario, CIFASIS, CONICETArgentina

Personalised recommendations