A Hybrid of Principal Component Analysis and Partial Least Squares for Face Recognition across Pose

  • Ajay Jaiswal
  • Nitin Kumar
  • R. K. Agrawal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

In this paper, we propose a simple and efficient hybrid approach based on the combination of principal component analysis and partial least squares. Principal component analysis is used to reduce the dimension of image in first step and partial least squares method is used to carry out pose invariant face recognition in second step. The performance of proposed method is compared with another popular method based on global linear regression on hybrid-eigenface (HGLR) in terms of classification accuracy and computation time. Experimental results on two well known publicly available face databases demonstrate the effectiveness of the proposed approach.

Keywords

Face recognition across pose Partial least squares Principal component analysis Hybrid-eigenfaces Linear regression 

References

  1. 1.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–459 (2003)CrossRefGoogle Scholar
  2. 2.
    Zhang, X., Gao, Y.: Face recognition across pose: A review. Pattern Recognition 42, 2876–2896 (2009)CrossRefGoogle Scholar
  3. 3.
    Chai, X., Shan, S., Chen, X., Gao, W.: Locally linear regression for pose-invariant face recognition. IEEE Trans. Image Process. 16(7), 1716–1725 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sharma, A., Dubey, A., Tripathi, P., Kumar, V.: Pose invariant virtual classifiers from single training image using novel hybrid-eigenfaces. Neurocomputing 73, 1868–1880 (2010)CrossRefGoogle Scholar
  5. 5.
    Li, A., Shan, S., Chen, X., Gao, W.: Cross-pose face recognition based on partial least squares. Pattern Recognition Letters 32(15), 1948–1955 (2011)CrossRefGoogle Scholar
  6. 6.
    Rosipal, R., Kramer, N.: Overview and recent advances in partial least squares. Subspace Latent Struct. Feat. Select., 34–51 (2006)Google Scholar
  7. 7.
    Schwartz, W., Kembhavi, A., Harwood, D., Davis, L.: Human detection using partial least squares analysis. In: IEEE Internat. Conf. on Computer Vision, pp. 24–31. IEEE (2009)Google Scholar
  8. 8.
    Baek, J., Kim, M.: Face recognition using partial least squares components. Pattern Recognition 37(6), 1303–1306 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans. PAMI 25(12), 1615–1618 (2003)CrossRefGoogle Scholar
  10. 10.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image Vision Comput. 16(5), 295–306 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ajay Jaiswal
    • 1
  • Nitin Kumar
    • 1
  • R. K. Agrawal
    • 1
  1. 1.School of Computer and Systems SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations