Fast Tracking Algorithm with Borders 1-D Histogram Correlation

  • María Curetti
  • Santiago Garcia Bravo
  • Gabriela Soledad Arri
  • Ladislao Mathé
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

This paper presents a fast algorithm for object tracking in an image sequence. It is a method that models the borders of the image as one-dimensional histograms which are then used instead of templates in the matching procedure. The algorithm models the item being tracked as well as the background in the vicinity so as to then suppress it. It uses cross correlation to find the best match and weighted average to renew the model.

Keywords

Image matching Image sequence analysis Video signal processing 

References

  1. 1.
    Black, M., Jepson, A.: Eigen-Tracking: Robust Matching and tracking of Articulated Objects Using a View-Based Representation. Int’l. J. Computer Vision 36(2), 63–84 (1998)CrossRefGoogle Scholar
  2. 2.
    Hager, G., Belhumeur, P.: Efficient Region Tracking with Parametric Models of Geometry and Illumination. IEEE Trans. Pattern Analysis and Machine Intelligence 20(10), 1025–1039 (1998)CrossRefGoogle Scholar
  3. 3.
    Cootes, T., Edwards, G., Taylor, C.: Active Appearance Models. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)CrossRefGoogle Scholar
  4. 4.
    Xiao, J., Kanade, T., Cohn, J.: Robust Full-Motion Recovery of Head by Dynamic Templates and Re-Registration Techniques. In: Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 163–169 (2002)Google Scholar
  5. 5.
    Baker, S., Matthews, I.: Lucas-Kanade 20 Years on: A Unifying Framework. Int’l. J. Computer Vision 53(3), 221–255 (2004)CrossRefGoogle Scholar
  6. 6.
    Matthews, I., Ishikawa, T., Baker, S.: The Template Update Problem. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(6) (2004)Google Scholar
  7. 7.
    Zhong, Y., Jain, A.K., Dubuisson-Jolly, M.-P.: Object Tracking Using Deformable Templates. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(5) (May 2000)Google Scholar
  8. 8.
    Nguyen, H.T., Worring, M., van den Boomgaard, R.: Occlusion robust adaptive template tracking. In: Eighth IEEE International Conference on Computer Vision (2001)Google Scholar
  9. 9.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-Time Tracking of Non-Rigid Objects using Mean Shift. IEEE (2000)Google Scholar
  10. 10.
    Wu, Y., Fan, J.: Contextual Flow. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • María Curetti
  • Santiago Garcia Bravo
  • Gabriela Soledad Arri
  • Ladislao Mathé

There are no affiliations available

Personalised recommendations