Evaluation and Selection of Morphological Procedures for Automatic Detection of Micro-calcifications in Mammography Images

  • Claudia C. Diaz-Huerta
  • Edgardo M. Felipe-Riverón
  • Luis M. Montaño-Zetina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


In this paper, we present an evaluation of four different algorithms, based on Mathematical Morphology, to detect the occurrence of micro-calcifications in digital mammogram images from the mini-MIAS database. Results provided by TMVA produced the ranking of features that allowed discrimination between real micro-calcifications and normal tissue. ROC area measures the performance of automatic classification, which produced its highest value 0.976 for Gaussian kernel, followed by polynomial kernel, which produced 0.972. An additional parameter, called Signal Efficiency*Purity (SE*P), is proposed as a measure of the number of micro-calcifications with the lowest quantity of noise.


Mammography image mage reconstruction digital mammography micro-calcification detection Mathematical Morphology 


  1. 1.
    Papadopoulos, A., Fotiadis, D.I., Costaridou, L.: Computers in Biology and Medicine 38, 1045–1055 (2008)CrossRefGoogle Scholar
  2. 2.
    Zheng, B., Qian, W., Clarke, L.: Digital mammography: mixed feature neural network with spectral entropy decision for detection of microcalcifications. IEEE Trans. Med. Imaging. 15(5), 589–597 (1996)CrossRefGoogle Scholar
  3. 3.
    Shaheen, E., Van Ongeval, C., Zanca, F., Cockmarin, L., Marshall, N., Jacobs, J.: The simulation of 3D Microcalcification clusters in D digital mammography and breast tomosynthesis. Medical Physics 38(12), 6659–6670 (2011)CrossRefGoogle Scholar
  4. 4.
    Sickles, E.: American Journal of Roentgenology 143, 461–464 (1984)Google Scholar
  5. 5.
    Hong, W.K., Bast, R.C., Hait, W.N., Kufe, E.W., Pollock, R., Weischelbaum, R.R., Holland, J.F., Frei, E.: Holland-Frei Cancer Medicine. People’s Medical Publishing House, USA (2010)Google Scholar
  6. 6.
  7. 7.
    Soille, P.: Morphological Image Analysis. Principles and ApplicationsGermany. Springer, Germany (2003)zbMATHGoogle Scholar
  8. 8.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Prentice Hall, New Jersey (2008)Google Scholar
  9. 9.
    Serra, J.: Mathematical Morphology, vol. 1. Academic Press, London (1982)zbMATHGoogle Scholar
  10. 10.
    Haralick, R.M., Shanmugam, K., Distein, I.: Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3(6), 610–621 (1973)CrossRefGoogle Scholar
  11. 11.
    Hoecker, A., Speckmayer, P., Stelzer, J., Therhaag, J., Von Toerne, E.: Voss H. TMVA-Toolkit for Multivariate Data Analysis. PoS ACAT 040 (2007)Google Scholar
  12. 12.
  13. 13.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Claudia C. Diaz-Huerta
    • 1
  • Edgardo M. Felipe-Riverón
    • 2
  • Luis M. Montaño-Zetina
    • 1
  1. 1.Research and Higher Studies CenterNational Polytechnic InstituteMexico CityMexico
  2. 2.Center for Computing ResearchNational Polytechnic InstituteMexico CityMexico

Personalised recommendations