Advertisement

Significative Learning Using Alpha-Beta Associative Memories

  • Catalán-Salgado Edgar Armando
  • Yáñez-Márquez Cornelio
  • Figueroa-Nazuno Jesus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

The main goal in pattern recognition is to be able to recognize interest patterns, although these patterns might be altered in some way. Associative memories is a branch in AI that obtains one generalization per class from the initial data set. The main problem is that when generalization is performed much information is lost. This is mainly due to the presence of outliers and pattern distribution in space. It is believed that one generalization is not sufficient to keep the information necessary to achieve a good performance in the recall phase. This paper shows a way to prevent information loss and make more significative learning allowing better recalling results.

References

  1. 1.
    Steinbuch, K., Piske, U.A.W.: Learning matrices and their applications. IEEE Transactions on Electronic Computers 12(6), 846–862 (1963)zbMATHCrossRefGoogle Scholar
  2. 2.
    Steinbuch, K.: Die lernmatrix. Kybernetik 1(3), 148–152 (1961)CrossRefGoogle Scholar
  3. 3.
    Anderson, J.A.: A memory storage model utilizing spatial correlation. Kybernetik 5(3), 113–119 (1968)CrossRefGoogle Scholar
  4. 4.
    Anderson, J.A.: A simple neural network generating an interactive memory. Mathematical Biosciences 14, 197–220 (1972)zbMATHCrossRefGoogle Scholar
  5. 5.
    Yáñez Márquez, C.: Associative memories based in binary operators and order relations. PhD thesis, Center for Computer Research (2002)Google Scholar
  6. 6.
    Yáñez Márquez, C., Diaz de Leon, J.L.: Associative memories based on order relations and binary operators. Computation and Systems 6(4), 300–311 (2003) (in Spanish)Google Scholar
  7. 7.
    Catalán-Salgado, E.A., Yáñez Márquez, C., José, A.C.A.: Simplification of the learning phase in the alpha-beta associative memories. In: CERMA 2008, pp. 428–433 (2008)Google Scholar
  8. 8.
    Yáñez, C., Felipe-Riveron, E., López-Yáñez, I., Flores-Carapia, R.: A Novel Approach to Automatic Color Matching. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 529–538. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    López-Yáñez, I., Yáñez Márquez, C., de la Sáenz-Morales, G.: Application of the gamma classifier to environmental data prediction. In: CERMA 2008, pp. 80–84. IEEE (2008)Google Scholar
  10. 10.
    Asuncion, A., Newman, D.: Uci machine learning repository (2007), http://archive.ics.uci.edu/ml/
  11. 11.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: Weka 3: Data mining software in java, http://www.cs.waikato.ac.nz/ml/weka/
  13. 13.
    Yáñez-Márquez, C., Sánchez-Fernández, L.P., López-Yáñez, I.: Alpha-Beta Associative Memories for Gray Level Patterns. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 818–823. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Christofides, N.: G.t.: An algorithmic approach. In: Press, A., (ed.): Computer Science and Applied Mathematics, Orlando, FL, USA (1975)Google Scholar
  15. 15.
    John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann, San Mateo (1995)Google Scholar
  16. 16.
    Sumner, M., Frank, E., Hall, M.: Speeding Up Logistic Model Tree Induction. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 675–683. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, pp. 148–156 (1996)Google Scholar
  18. 18.
    Witten, I.H., Frank, E.: Practical Machine Learning Tools, 2nd edn. Morgan Kaufmann Series in Data Management. Morgan Kaufmann Publishers Inc., USA (2005)zbMATHGoogle Scholar
  19. 19.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Catalán-Salgado Edgar Armando
    • 1
  • Yáñez-Márquez Cornelio
    • 2
  • Figueroa-Nazuno Jesus
    • 2
  1. 1.ESCOM-IPNMexico DFMexico
  2. 2.CICMexico DFMexico

Personalised recommendations