CAR-NF + : An Improved Version of CAR-NF Classifier

  • Raudel Hernández-León
  • José Hernández-Palancar
  • Jesús Ariel Carrasco-Ochoa
  • José Francisco Martínez-Trinidad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)


In this paper, we propose two improvements to CAR-NF classifier, which is a classifier based on Class Association Rules (CARs). The first one, is a theoretical proof that allows selecting the minimum Netconf threshold, independently of the dataset, that avoids ambiguity at the classification stage. The second one, is a new coverage criterion, which aims to reduce the number of non-covered unseen-transactions during the classification stage. Experiments over several datasets show that the improved classifier, called CAR-NF + , beats the best reported classifiers based on CARs, including the original CAR-NF classifier.


Data mining Supervised classification Class association rules 


  1. 1.
    Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of the KDD, New York, NY, USA, pp. 80–86 (1998)Google Scholar
  2. 2.
    Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: Proceedings of the ICDM, pp. 369–376 (2001)Google Scholar
  3. 3.
    Berzal, F., Blanco, I., Sánchez, D., Vila, M.A.: Measuring the accuracy and interest of association rules: A new framework. Intelligent Data Analysis 6(3), 221–235 (2002)zbMATHGoogle Scholar
  4. 4.
    Coenen, F.: The LUCS-KDD discretised/normalised ARM and CARM Data Library (2003),
  5. 5.
    Ahn, K.I., Kim, J.Y.: Efficient Mining of Frequent Itemsets and a Measure of Interest for Association Rule Mining. Information and Knowledge Management 3(3), 245–257 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wang, J., Karypis, G.: HARMONY: Efficiently mining the best rules for classification. In: Proceedings of SDM, pp. 205–216 (2005)Google Scholar
  7. 7.
    Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Steinbach, M., Kumar, V.: Generalizing the notion of confidence. Knowl. Inf. Syst. 12(3), 279–299 (2007)CrossRefGoogle Scholar
  9. 9.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007),
  10. 10.
    Cheng, H., Yan, X., Han, J., Philip, S.: Yu: Direct Discriminative Pattern Mining for Effective Classification. In: Proceedings of the ICDE, pp. 169–178 (2008)Google Scholar
  11. 11.
    Karabatak, M., Ince, M.C.: An expert system for detection of breast cancer based on association rules and neural network. Expert Syst. Appl. 36, 3465–3469 (2009)CrossRefGoogle Scholar
  12. 12.
    Park, S.H., Reyes, J.A., Gilbert, D.R., Kim, J.W., Kim, S.: Prediction of protein-protein interaction types using association rule based classification. BMC Bioinformatics 10(1) (2009)Google Scholar
  13. 13.
    Bae, J.K., Kim, J.: Integration of heterogeneous models to predict consumer behavior. Expert Syst. Appl. 37, 1821–1826 (2010)CrossRefGoogle Scholar
  14. 14.
    Hernández, R., Carrasco, J.A., Martínez, J.: Fco. and Hernández, J.: Classifying using Specific Rules with High Confidence. In: Proceedings of the MICAI, pp. 75–80 (2010)Google Scholar
  15. 15.
    Hernández, R., Carrasco, J.A., Martínez, J.F., Hernández, J.: CAR-NF: A Classifier based on Specific Rules with High Netconf. Intelligent Data Analysis 16(1) (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Raudel Hernández-León
    • 1
  • José Hernández-Palancar
    • 1
  • Jesús Ariel Carrasco-Ochoa
    • 2
  • José Francisco Martínez-Trinidad
    • 2
  1. 1.Centro de Aplicaciones de Tecnologías de Avanzada (CENATAV)La HabanaCuba
  2. 2.Computer Science DepartmentInstituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)PueblaMéxico

Personalised recommendations